Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Adv Vet Anim Res ; 11(1): 171-180, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38680805

RESUMO

Objective: Many studies have observed different characteristics among productive systems in the rural territories of Latin America. Therefore, understanding and characterizing them while they function plays an essential role in determining their relationship between development and environment. A study has been conducted in the Orellana province of NE Ecuador to determine their typology and then classify them according to the variables that describe their main traits or attributes using cluster analysis (CA). Materials and Methods: A survey was structured to investigate physical, productive, environmental, as well as socioeconomic character variables, which were subsequently applied to a random sample of the 5,963 agricultural productive units (APUs) through face-to-face contact with producers during an in situ visit to their farms. Result: The CA allowed us to identify three typologies of APUs in the Orellana Province. The first has been Type 1, which is denominated as the most conventional (40%), while Type 2 uses more efficient natural resources but represents an amount of only 9.4%. In contrast, type 3 (50.6%) depends on a significant part of local or national development programs. Conclusion: All groups indicated some peculiarities in common, as there were marked differences in the use and distribution of land as well as production methods among them. Consequently, this pioneering study allowed us to identify different production methods. Therefore, we encourage local and national governments to establish policies for natural resource conservation in such high-diversity zones.

2.
ACS Appl Energy Mater ; 6(6): 3579-3589, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37009422

RESUMO

The increasing demand for electrical energy storage makes it essential to explore alternative battery chemistries that overcome the energy-density limitations of the current state-of-the-art lithium-ion batteries. In this scenario, lithium-sulfur batteries (LSBs) stand out due to the low cost, high theoretical capacity, and sustainability of sulfur. However, this battery technology presents several intrinsic limitations that need to be addressed in order to definitively achieve its commercialization. Herein, we report the fruitfulness of three different formulations using well-selected functional carbonaceous additives for sulfur cathode development, an in-house synthesized graphene-based porous carbon (ResFArGO), and a mixture of commercially available conductive carbons (CAs), as a facile and scalable strategy for the development of high-performing LSBs. The additives clearly improve the electrochemical properties of the sulfur electrodes due to an electronic conductivity enhancement, leading to an outstanding C-rate response with a remarkable capacity of 2 mA h cm-2 at 1C and superb capacities of 4.3, 4.0, and 3.6 mA h cm-2 at C/10 for ResFArGO10, ResFArGO5, and CAs, respectively. Moreover, in the case of ResFArGO, the presence of oxygen functional groups enables the development of compact high sulfur loading cathodes (>4 mgS cm-2) with a great ability to trap the soluble lithium polysulfides. Notably, the scalability of our system was further demonstrated by the assembly of prototype pouch cells delivering excellent capacities of 90 mA h (ResFArGO10 cell) and 70 mA h (ResFArGO5 and CAs cell) at C/10.

3.
Gels ; 9(4)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37102948

RESUMO

Gel polymer electrolytes (GPEs) are emerging as suitable candidates for high-performing lithium-sulfur batteries (LSBs) due to their excellent performance and improved safety. Within them, poly(vinylidene difluoride) (PVdF) and its derivatives have been widely used as polymer hosts due to their ideal mechanical and electrochemical properties. However, their poor stability with lithium metal (Li0) anode has been identified as their main drawback. Here, the stability of two PVdF-based GPEs with Li0 and their application in LSBs is studied. PVdF-based GPEs undergo a dehydrofluorination process upon contact with the Li0. This process results in the formation of a LiF-rich solid electrolyte interphase that provides high stability during galvanostatic cycling. Nevertheless, despite their outstanding initial discharge, both GPEs show an unsuitable battery performance characterized by a capacity drop, ascribed to the loss of the lithium polysulfides and their interaction with the dehydrofluorinated polymer host. Through the introduction of an intriguing lithium salt (lithium nitrate) in the electrolyte, a significant improvement is achieved delivering higher capacity retention. Apart from providing a detailed study of the hitherto poorly characterized interaction process between PVdF-based GPEs and the Li0, this study demonstrates the need for an anode protection process to use this type of electrolytes in LSBs.

4.
Small ; 18(27): e2202027, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35678093

RESUMO

Rechargeable lithium metal batteries (LMBs) are deemed as a viable solution to improve the power and/or energy density of the contemporary lithium-ion batteries (LIBs). However, poor Li-ion diffusivity within high-energy cathodes causes sluggish kinetics of the corresponding redox reactions particularly at high C-rates, thereby largely impeding the performance of rechargeable LMBs. In this work, a dual-functional single Li-ion conducting polysalt is proposed as both catholyte and binding agent (coined "Binderlyte") for rechargeable LMBs. The designed Binderlyte is thermally and electrochemically stable, allowing its use for high-energy cathodes like Li(Ni1/3 Mn1/3 Co1/3 )O2 (NMC111). The implementation of designer Binderlyte endows the Li° || NMC111 cell with superior cycling stability and capacity retention even at an extremely high C-rate of 10C. In particular, the soft and flexible nature of the Binderlyte allows the thick NMC cathode to operate at extremely low porosity (20 vol%) with almost no capacity decay. This work may provide a paradigm shift on the design of innovative polymeric materials, which are essential for developing high-performing rechargeable LMBs.

5.
J Am Chem Soc ; 144(22): 9806-9816, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35638261

RESUMO

Polymer electrolytes (PEs) with excellent flexibility, processability, and good contact with lithium metal (Li°) anodes have attracted substantial attention in both academic and industrial settings. However, conventional poly(ethylene oxide) (PEO)-based PEs suffer from a low lithium-ion transference number (TLi+), leading to a notorious concentration gradient and internal cell polarization. Here, we report two kinds of highly lithium-ion conductive and solvent-free PEs using the benzene-based lithium salts, lithium (benzenesulfonyl)(trifluoromethanesulfonyl)imide (LiBTFSI) and lithium (2,4,6-triisopropylbenzenesulfonyl)(trifluoromethanesulfonyl)imide (LiTPBTFSI), which show significantly improved TLi+ and selective lithium-ion conductivity. Using molecular dynamics simulations, we pinpoint the strong π-π stacking interaction between pairs of benzene-based anions as the cause of this improvement. In addition, we show that Li°âˆ¥Li° and Li°âˆ¥LiFePO4 cells with the LiBTFSI/PEO electrolytes present enhanced cycling performance. By considering π-π stacking interactions as a new molecular-level design route of salts for electrolyte, this work provides an efficient and facile novel strategy for attaining highly selective lithium-ion conductive PEs.

6.
Nat Mater ; 21(4): 455-462, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35165438

RESUMO

Rechargeable lithium metal (Li0) batteries (RLMBs) are considered attractive for improving Li-ion batteries. Lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) has been extensively used as a conducting salt for RLMBs due to its advantageous stability and innocuity. However, LiTFSI-based electrolytes are corrosive towards aluminium (Al0) current collectors at low potentials (>3.8 V versus Li/Li+), thereby excluding their application in 4-V-class RLMBs. Herein, we report on a non-corrosive sulfonimide salt, lithium (difluoromethanesulfonyl)(trifluoromethanesulfonyl)imide (LiDFTFSI), that remarkably suppresses the anodic dissolution of the Al0 current collector at high potentials (>4.2 V versus Li/Li+) and significantly improves the cycling performance of Li(Ni1/3Mn1/3Co1/3)O2 (NMC111) cells. In addition, this sulfonimide salt results in the growth of an advantageous solid electrolyte interphase on the Li0 electrode. The replacement of either LiTFSI or LiPF6 with LiDFTFSI endows a Li0||NMC111 cell with superior cycling stability and capacity retention (87% at cycle 200), demonstrating the decisive role of the salt anion in dictating the electrochemical performance of RLMBs.

7.
Animals (Basel) ; 10(11)2020 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-33171794

RESUMO

A study was conducted at the Escuela Superior Politècnica de Chimborazo, Ecuador, to evaluate the influence of litter size of guinea pigs (Cavia porcellus) on their development and to establish the economic profitability of the production system. Forty-eight animals were used, distributed into litters of two, three, and four rodents per litter, with a balanced diet and green fresh alfalfa for the weaning, growth, and fattening stage, the rodents and litters were randomly selected, applying the statistical model completely randomly and evaluating different variables across 120 days. The litters of three guinea pigs obtained the best productive responses and economic profitability. With respect to sex, the males presented better productive behavior, greater economic increase, and less cost, evidencing that mixed feeding influences the number of guinea pigs per birth in terms of growth and development. The results serve to improve guinea pig meat production for the rural population.

8.
J Phys Chem Lett ; 11(15): 6133-6138, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32672984

RESUMO

Introducing a small dose of an electrolyte additive into solid polymer electrolytes (SPEs) is an appealing strategy for improving the quality of the solid-electrolyte-interphase (SEI) layer formed on the lithium metal (Li°) anode, thereby extending the cycling life of solid-state lithium metal batteries (SSLMBs). In this work, we report a new type of SPEs comprising a low-cost, fluorine-free salt, lithium tricyanomethanide, as the main conducting salt and a fluorinated salt, lithium bis(fluorosulfonyl)imide (LiFSI), as the electrolyte additive for enhancing the performance of SPE-based SSLMBs. Our results demonstrate that a homogeneous and stable SEI layer is readily formed on the surface of the Li° electrode through the preferential reductive decomposition of LiFSI, and consequently, the cycle stabilities of Li°||Li° and Li°||LiFePO4 cells are significantly improved after the incorporation of LiFSI as an additive. The intriguing chemistry of the salt anion revealed in this work may expedite the large-scale implementation of SSLMBs in the near future.

9.
J Herb Med ; 6(1): 37-41, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27042401

RESUMO

The extracts of 27 vegetables, spices and herbs were screened for their functional ability to inhibit the aggregation of islet amyloid polypeptide (IAPP, amylin) into toxic amyloid aggregates. The aggregation of IAPP has been directly linked to the death of pancreatic ß-islet cells in type 2 diabetes. Inhibiting the aggregation of IAPP is believed to have the potential to slow, if not prevent entirely, the progression of this disease. As vegetables, spices and herbs are known to possess many different positive health effects, the extracts of 27 plants (abundant within the United States and spanning several plant families) were screened for their ability to inhibit the formation of toxic IAPP aggregates. Their anti-amyloid activities were assessed through (1) thioflavin T binding assays, (2) visualization of amyloid fibers using atomic force microscopy and (3) cell rescue studies. From this research, mint, peppermint, red bell pepper and thyme emerged as possessing the greatest anti-amyloid activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA