Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38328205

RESUMO

Mammalian behavior and physiology undergo dramatic changes in early life. Young animals rely on conspecifics to meet their homeostatic needs, until weaning and puberty initiate nutritional independence and sex-specific social interactions, respectively. How neuronal populations regulating homeostatic functions and social behaviors develop and mature during these transitions remains unclear. We used paired transcriptomic and chromatin accessibility profiling to examine the developmental trajectories of neuronal populations in the hypothalamic preoptic region, where cell types with key roles in physiological and behavioral control have been identified1-6. These data reveal a remarkable diversity of developmental trajectories shaped by the sex of the animal, and the location and behavioral or physiological function of the corresponding cell types. We identify key stages of preoptic development, including the perinatal emergence of sex differences, postnatal maturation and subsequent refinement of signaling networks, and nonlinear transcriptional changes accelerating at the time of weaning and puberty. We assessed preoptic development in various sensory mutants and find a major role for vomeronasal sensing in the timing of preoptic cell type maturation. These results provide novel insights into the development of neurons controlling homeostatic functions and social behaviors and lay ground for examining the dynamics of these functions in early life.

2.
J Cardiovasc Dev Dis ; 10(10)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37887855

RESUMO

Dilated cardiomyopathy (DCM) is a common heart muscle disorder that frequently leads to heart failure, arrhythmias, and death. While DCM is often heritable, disease-causing mutations are identified in only ~30% of cases. In a forward genetic mutagenesis screen, we identified a novel zebrafish mutant, heart and head (hahvcc43), characterized by early-onset cardiomyopathy and craniofacial defects. Linkage analysis and next-generation sequencing identified a nonsense variant in the highly conserved scfd1 gene, also known as sly1, that encodes sec1 family domain-containing 1. Sec1/Munc18 proteins, such as Scfd1, are involved in membrane fusion regulating endoplasmic reticulum (ER)/Golgi transport. CRISPR/Cas9-engineered scfd1vcc44 null mutants showed severe cardiac and craniofacial defects and embryonic lethality that recapitulated the phenotype of hahvcc43 mutants. Electron micrographs of scfd1-depleted cardiomyocytes showed reduced myofibril width and sarcomere density, as well as reticular network disorganization and fragmentation of Golgi stacks. Furthermore, quantitative PCR analysis showed upregulation of ER stress response and apoptosis markers. Both heterozygous hahvcc43 mutants and scfd1vcc44 mutants survived to adulthood, showing chamber dilation and reduced ventricular contraction. Collectively, our data implicate scfd1 loss-of-function as the genetic defect at the hahvcc43 locus and provide new insights into the role of scfd1 in cardiac development and function.

3.
bioRxiv ; 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37790437

RESUMO

We report a role for activity in the development of the primary sensory neurons that detect touch. Genetic deletion of Piezo2, the principal mechanosensitive ion channel in somatosensory neurons, caused profound changes in the formation of mechanosensory end organ structures and altered somatosensory neuron central targeting. Single cell RNA sequencing of Piezo2 conditional mutants revealed changes in gene expression in the sensory neurons activated by light mechanical forces, whereas other neuronal classes were less affected. To further test the role of activity in mechanosensory end organ development, we genetically deleted the voltage-gated sodium channel Nav1.6 (Scn8a) in somatosensory neurons throughout development and found that Scn8a mutants also have disrupted somatosensory neuron morphologies and altered electrophysiological responses to mechanical stimuli. Together, these findings indicate that mechanically evoked neuronal activity acts early in life to shape the maturation of the mechanosensory end organs that underlie our sense of gentle touch.

4.
Neuron ; 111(20): 3211-3229.e9, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37725982

RESUMO

Across mammalian skin, structurally complex and diverse mechanosensory end organs respond to mechanical stimuli and enable our perception of dynamic, light touch. How forces act on morphologically dissimilar mechanosensory end organs of the skin to gate the requisite mechanotransduction channel Piezo2 and excite mechanosensory neurons is not understood. Here, we report high-resolution reconstructions of the hair follicle lanceolate complex, Meissner corpuscle, and Pacinian corpuscle and the subcellular distribution of Piezo2 within them. Across all three end organs, Piezo2 is restricted to the sensory axon membrane, including axon protrusions that extend from the axon body. These protrusions, which are numerous and elaborate extensively within the end organs, tether the axon to resident non-neuronal cells via adherens junctions. These findings support a unified model for dynamic touch in which mechanical stimuli stretch hundreds to thousands of axon protrusions across an end organ, opening proximal, axonal Piezo2 channels and exciting the neuron.


Assuntos
Mecanotransdução Celular , Células de Merkel , Animais , Células de Merkel/fisiologia , Mecanotransdução Celular/fisiologia , Imageamento Tridimensional , Canais Iônicos/metabolismo , Mecanorreceptores/fisiologia , Mamíferos/metabolismo
5.
Dev Cell ; 58(20): 2032-2047.e6, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37607547

RESUMO

Mechanosensory neurons innervating the skin underlie our sense of touch. Fast-conducting, rapidly adapting mechanoreceptors innervating glabrous (non-hairy) skin form Meissner corpuscles, while in hairy skin, they associate with hair follicles, forming longitudinal lanceolate endings. How mechanoreceptors develop axonal endings appropriate for their skin targets is unknown. We report that mechanoreceptor morphologies across different skin regions are indistinguishable during early development but diverge post-natally, in parallel with skin maturation. Neurons terminating along the glabrous and hairy skin border exhibit hybrid morphologies, forming both Meissner corpuscles and lanceolate endings. Additionally, molecular profiles of neonatal glabrous and hairy skin-innervating neurons largely overlap. In mouse mutants with ectopic glabrous skin, mechanosensory neurons form end-organs appropriate for the altered skin type. Finally, BMP5 and BMP7 are enriched in glabrous skin, and signaling through type I bone morphogenetic protein (BMP) receptors in neurons is critical for Meissner corpuscle morphology. Thus, mechanoreceptor morphogenesis is flexibly instructed by target tissues.


Assuntos
Mecanorreceptores , Neurônios , Camundongos , Animais , Mecanorreceptores/metabolismo , Pele/inervação , Tato/fisiologia , Cabelo
6.
bioRxiv ; 2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36993253

RESUMO

Specialized mechanosensory end organs within mammalian skin-hair follicle-associated lanceolate complexes, Meissner corpuscles, and Pacinian corpuscles-enable our perception of light, dynamic touch 1 . In each of these end organs, fast-conducting mechanically sensitive neurons, called Aß low-threshold mechanoreceptors (Aß LTMRs), associate with resident glial cells, known as terminal Schwann cells (TSCs) or lamellar cells, to form complex axon ending structures. Lanceolate-forming and corpuscle-innervating Aß LTMRs share a low threshold for mechanical activation, a rapidly adapting (RA) response to force indentation, and high sensitivity to dynamic stimuli 1-6 . How mechanical stimuli lead to activation of the requisite mechanotransduction channel Piezo2 7-15 and Aß RA-LTMR excitation across the morphologically dissimilar mechanosensory end organ structures is not understood. Here, we report the precise subcellular distribution of Piezo2 and high-resolution, isotropic 3D reconstructions of all three end organs formed by Aß RA-LTMRs determined by large volume enhanced Focused Ion Beam Scanning Electron Microscopy (FIB-SEM) imaging. We found that within each end organ, Piezo2 is enriched along the sensory axon membrane and is minimally or not expressed in TSCs and lamellar cells. We also observed a large number of small cytoplasmic protrusions enriched along the Aß RA-LTMR axon terminals associated with hair follicles, Meissner corpuscles, and Pacinian corpuscles. These axon protrusions reside within close proximity to axonal Piezo2, occasionally contain the channel, and often form adherens junctions with nearby non-neuronal cells. Our findings support a unified model for Aß RA-LTMR activation in which axon protrusions anchor Aß RA-LTMR axon terminals to specialized end organ cells, enabling mechanical stimuli to stretch the axon in hundreds to thousands of sites across an individual end organ and leading to activation of proximal Piezo2 channels and excitation of the neuron.

7.
Curr Cardiol Rep ; 24(9): 1069-1075, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35759169

RESUMO

PURPOSE OF REVIEW: Truncating TTN variants (TTNtv) are the most common genetic cause of dilated cardiomyopathy (DCM), but the underlying mechanisms are incompletely understood and effective therapeutic strategies are lacking. Here we review recent data that shed new light on the functional consequences of TTNtv and how these effects may vary with mutation location. RECENT FINDINGS: Whether TTNtv act by haploinsufficiency or dominant negative effects has been hotly debated. New evidence now implicates both mechanisms in TTNtv-related DCM, showing reduced titin content and persistent truncated titin that may be incorporated into protein aggregates. The extent to which aggregate formation and protein quality control defects differ with TTNtv location and contribute to contractile dysfunction is unresolved. TTNtv-associated DCM has a complex etiology that involves varying combinations of wild-type titin deficiency and dominant negative effects of truncated mutant titin. Therapeutic strategies to improve protein handling may be beneficial in some cases.


Assuntos
Cardiomiopatias , Cardiomiopatia Dilatada , Cardiomiopatias/genética , Cardiomiopatia Dilatada/genética , Conectina/genética , Conectina/metabolismo , Humanos , Mutação
8.
Cell ; 184(22): 5608-5621.e18, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34637701

RESUMO

Mammals use glabrous (hairless) skin of their hands and feet to navigate and manipulate their environment. Cortical maps of the body surface across species contain disproportionately large numbers of neurons dedicated to glabrous skin sensation, in part reflecting a higher density of mechanoreceptors that innervate these skin regions. Here, we find that disproportionate representation of glabrous skin emerges over postnatal development at the first synapse between peripheral mechanoreceptors and their central targets in the brainstem. Mechanoreceptor synapses undergo developmental refinement that depends on proximity of their terminals to glabrous skin, such that those innervating glabrous skin make synaptic connections that expand their central representation. In mice incapable of sensing gentle touch, mechanoreceptors innervating glabrous skin still make more powerful synapses in the brainstem. We propose that the skin region a mechanoreceptor innervates controls the developmental refinement of its central synapses to shape the representation of touch in the brain.


Assuntos
Tronco Encefálico/metabolismo , Mecanorreceptores/metabolismo , Sinapses/metabolismo , Percepção do Tato/fisiologia , Potenciais de Ação/fisiologia , Animais , Animais Recém-Nascidos , Axônios/metabolismo , Canais Iônicos/metabolismo , Camundongos Knockout , Neurônios/metabolismo , Imagem Óptica , Optogenética , Pele/inervação
9.
Neuron ; 109(23): 3736-3757, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34592169

RESUMO

Primary somatosensory neurons convey salient information about our external environment and internal state to the CNS, allowing us to detect, perceive, and react to a wide range of innocuous and noxious stimuli. Pseudo-unipolar in shape, and among the largest (longest) cells of most mammals, dorsal root ganglia (DRG) somatosensory neurons have peripheral axons that extend into skin, muscle, viscera, or bone and central axons that innervate the spinal cord and brainstem, where they synaptically engage the central somatosensory circuitry. Here, we review the diversity of mammalian DRG neuron subtypes and the intrinsic and extrinsic mechanisms that control their development. We describe classical and contemporary advances that frame our understanding of DRG neurogenesis, transcriptional specification of DRG neurons, and the establishment of morphological, physiological, and synaptic diversification across somatosensory neuron subtypes.


Assuntos
Gânglios Espinais , Neurogênese , Animais , Axônios/fisiologia , Gânglios Espinais/fisiologia , Mamíferos , Neurogênese/fisiologia , Neurônios/fisiologia , Medula Espinal
10.
J Cardiovasc Dev Dis ; 8(2)2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33504111

RESUMO

Dilated cardiomyopathy (DCM) is a common heart muscle disorder characterized by ventricular dilation and contractile dysfunction that is associated with significant morbidity and mortality. New insights into disease mechanisms and strategies for treatment and prevention are urgently needed. Truncating variants in the TTN gene, which encodes the giant sarcomeric protein titin (TTNtv), are the most common genetic cause of DCM, but exactly how TTNtv promote cardiomyocyte dysfunction is not known. Although rodent models have been widely used to investigate titin biology, they have had limited utility for TTNtv-related DCM. In recent years, zebrafish (Danio rerio) have emerged as a powerful alternative model system for studying titin function in the healthy and diseased heart. Optically transparent embryonic zebrafish models have demonstrated key roles of titin in sarcomere assembly and cardiac development. The increasing availability of sophisticated imaging tools for assessment of heart function in adult zebrafish has revolutionized the field and opened new opportunities for modelling human genetic disorders. Genetically modified zebrafish that carry a human A-band TTNtv have now been generated and shown to spontaneously develop DCM with age. This zebrafish model will be a valuable resource for elucidating the phenotype modifying effects of genetic and environmental factors, and for exploring new drug therapies.

11.
Nature ; 587(7833): 258-263, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33116307

RESUMO

The anterolateral pathway consists of ascending spinal tracts that convey pain, temperature and touch information from the spinal cord to the brain1-4. Projection neurons of the anterolateral pathway are attractive therapeutic targets for pain treatment because nociceptive signals emanating from the periphery are channelled through these spinal projection neurons en route to the brain. However, the organizational logic of the anterolateral pathway remains poorly understood. Here we show that two populations of projection neurons that express the structurally related G-protein-coupled receptors (GPCRs) TACR1 and GPR83 form parallel ascending circuit modules that cooperate to convey thermal, tactile and noxious cutaneous signals from the spinal cord to the lateral parabrachial nucleus of the pons. Within this nucleus, axons of spinoparabrachial (SPB) neurons that express Tacr1 or Gpr83 innervate distinct sets of subnuclei, and strong optogenetic stimulation of the axon terminals induces distinct escape behaviours and autonomic responses. Moreover, SPB neurons that  express Gpr83 are highly sensitive to cutaneous mechanical stimuli and receive strong synaptic inputs from both high- and low-threshold primary mechanosensory neurons. Notably, the valence associated with activation of SPB neurons that express Gpr83 can be either positive or negative, depending on stimulus intensity. These findings reveal anatomically, physiologically and functionally distinct subdivisions of the SPB tract that underlie affective aspects of touch and pain.


Assuntos
Vias Neurais , Dor/fisiopatologia , Medula Espinal/citologia , Medula Espinal/fisiologia , Tato/fisiologia , Animais , Axônios/metabolismo , Feminino , Masculino , Mecanotransdução Celular , Camundongos , Filosofia , Receptores Acoplados a Proteínas G/genética , Células Receptoras Sensoriais/metabolismo , Pele/inervação , Sinapses/metabolismo
12.
Cell Rep ; 26(12): 3298-3312.e4, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30893602

RESUMO

Commissural axons initially respond to attractive signals at the midline, but once they cross, they become sensitive to repulsive cues. This switch prevents axons from re-entering the midline. In insects and mammals, negative regulation of Roundabout (Robo) receptors prevents premature response to the midline repellant Slit. In Drosophila, the endosomal protein Commissureless (Comm) prevents Robo1 surface expression before midline crossing by diverting Robo1 into late endosomes. Notably, Comm is not conserved in vertebrates. We identified two Nedd-4-interacting proteins, Ndfip1 and Ndfip2, that act analogously to Comm to localize Robo1 to endosomes. Ndfip proteins recruit Nedd4 E3 ubiquitin ligases to promote Robo1 ubiquitylation and degradation. Ndfip proteins are expressed in commissural axons in the developing spinal cord and removal of Ndfip proteins results in increased Robo1 expression and reduced midline crossing. Our results define a conserved Robo1 intracellular sorting mechanism between flies and mammals to avoid premature responsiveness to Slit.


Assuntos
Axônios/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas de Membrana/metabolismo , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores Imunológicos/metabolismo , Medula Espinal/metabolismo , Animais , Células COS , Chlorocebus aethiops , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Ubiquitina-Proteína Ligases Nedd4/genética , Proteínas do Tecido Nervoso/genética , Proteólise , Receptores Imunológicos/genética , Proteínas Roundabout
13.
ACS Chem Biol ; 14(1): 106-117, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30571086

RESUMO

We present data demonstrating the natural product mimic, zinaamidole A (ZNA), is a modulator of metal ion homeostasis causing cancer-selective cell death by specifically inducing cellular Zn2+-uptake in transformed cells. ZNA's cancer selectivity was evaluated using metastatic, patient-derived breast cancer cells, established human breast cancer cell lines, and three-dimensional organoid models derived from normal and transformed mouse mammary glands. Structural analysis of ZNA demonstrated that the compound interacts with zinc through the N2-acyl-2-aminoimidazole core. Combination treatment with ZnSO4 strongly potentiated ZNA's cancer-specific cell death mechanism, an effect that was not observed with other transition metals. We show that Zn2+-dyshomeostasis induced by ZNA is unique and markedly more selective than other known Zn2+-interacting compounds such as clioquinol. The in vivo bioactivity of ZNA was also assessed and revealed that tumor-bearing mice treated with ZNA had improved survival outcomes. Collectively, these data demonstrate that the N2-acyl-2-aminoimidazole core of ZNA represents a powerful chemotype to induce cell death in cancer cells concurrently with a disruption in zinc homeostasis.


Assuntos
Imidazóis/farmacologia , Ionóforos/farmacologia , Zinco/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Ionóforos/metabolismo , Camundongos
15.
Circ Genom Precis Med ; 11(8): e002135, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30354343

RESUMO

Background Truncating variants in the TTN gene ( TTNtv) are common in patients with dilated cardiomyopathy (DCM) but also occur in the general population. Whether TTNtv are sufficient to cause DCM or require a second hit for DCM manifestation is an important clinical issue. Methods We generated a zebrafish model of an A-band TTNtv identified in 2 human DCM families in which early-onset disease appeared to be precipitated by ventricular volume overload. Cardiac phenotypes were serially assessed from 0 to 12 months using video microscopy, high-frequency echocardiography, and histopathologic analysis. The effects of sustained hemodynamic stress resulting from an anemia-induced hyperdynamic state were also evaluated. Results Homozygous ttna mutants had severe cardiac dysmorphogenesis and premature death, whereas heterozygous mutants ( ttnatv/+) survived into adulthood and spontaneously developed DCM. Six-month-old ttnatv/+ fish had reduced baseline ventricular systolic function and failed to mount a hypercontractile response when challenged by hemodynamic stress. Pulsed wave and tissue Doppler analysis also revealed unsuspected ventricular diastolic dysfunction in ttnatv/+ fish with prolonged isovolumic relaxation and increased diastolic passive stiffness in the absence of myocardial fibrosis. These defects reduced diastolic reserve under stress conditions and resulted in disproportionately greater atrial dilation than observed in wild-type fish. Conclusions Heterozygosity for A-band titin truncation is sufficient to cause DCM in adult zebrafish. Abnormalities of systolic and diastolic reserve in titin-truncated fish reduce stress tolerance and may contribute to a substrate for atrial arrhythmogenesis. These data suggest that hemodynamic stress may be an important modifiable risk factor in human TTNtv-related DCM.


Assuntos
Cardiomiopatia Dilatada/genética , Conectina/genética , Hemodinâmica/genética , Estresse Fisiológico/genética , Adaptação Biológica/genética , Adolescente , Adulto , Idoso , Animais , Animais Geneticamente Modificados , Cardiomiopatia Dilatada/patologia , Cardiomiopatia Dilatada/fisiopatologia , Embrião não Mamífero , Feminino , Estudos de Associação Genética , Coração/embriologia , Coração/crescimento & desenvolvimento , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Sarcômeros/patologia , Deleção de Sequência , Volume Sistólico/genética , Adulto Jovem , Peixe-Zebra
16.
Chem Sci ; 9(34): 6922-6927, 2018 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-30210766

RESUMO

Quantitative structure-activity relationships have an extensive history for optimizing drug candidates, yet they have only recently been applied in reaction development. In this report, the predictive power of multivariate parameterization has been explored toward the optimization of a catalyst promoting an aza-Michael conjugate addition for the asymmetric synthesis of letermovir. A hybrid approach combining 2D QSAR and modern 3D physical organic parameters performed better than either approach in isolation. Using these predictive models, a series of new catalysts were identified, which catalyzed the reaction to provide the desired product in improved enantioselectivity relative to the parent catalyst.

17.
Dis Model Mech ; 11(9)2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30012855

RESUMO

Zebrafish are increasingly used as a vertebrate model to study human cardiovascular disorders. Although heart structure and function are readily visualized in zebrafish embryos because of their optical transparency, the lack of effective tools for evaluating the hearts of older, nontransparent fish has been a major limiting factor. The recent development of high-frequency echocardiography has been an important advance for in vivo cardiac assessment, but it necessitates anesthesia and has limited ability to study acute interventions. We report the development of an alternative experimental ex vivo technique for quantifying heart size and function that resembles the Langendorff heart preparations that have been widely used in mammalian models. Dissected adult zebrafish hearts were perfused with a calcium-containing buffer, and a beat frequency was maintained with electrical stimulation. The impact of pacing frequency, flow rate and perfusate calcium concentration on ventricular performance (including end-diastolic and end-systolic volumes, ejection fraction, radial strain, and maximal velocities of shortening and relaxation) were evaluated and optimal conditions defined. We determined the effects of age on heart function in wild-type male and female zebrafish, and successfully detected hypercontractile and hypocontractile responses after adrenergic stimulation or doxorubicin treatment, respectively. Good correlations were found between indices of cardiac contractility obtained with high-frequency echocardiography and with the ex vivo technique in a subset of fish studied with both methods. The ex vivo beating heart preparation is a valuable addition to the cardiac function tool kit that will expand the use of adult zebrafish for cardiovascular research.


Assuntos
Envelhecimento/fisiologia , Coração/fisiologia , Perfusão/métodos , Peixe-Zebra/fisiologia , Animais , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/fisiopatologia , Doxorrubicina/efeitos adversos , Eletrocardiografia , Feminino , Ventrículos do Coração/anatomia & histologia , Masculino , Contração Miocárdica , Tamanho do Órgão
18.
Chem Sci ; 9(9): 2398-2412, 2018 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29719711

RESUMO

Multivariate Linear Regression (MLR) models utilizing computationally-derived and empirically-derived physical organic molecular descriptors are described in this review. Several reports demonstrating the effectiveness of this methodological approach towards reaction optimization and mechanistic interrogation are discussed. A detailed protocol to access quantitative and predictive MLR models is provided as a guide for model development and parameter analysis.

19.
J Am Chem Soc ; 139(37): 13117-13125, 2017 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-28820588

RESUMO

A library of 29 homologous Ru-based olefin metathesis catalysts has been tested for ethenolysis of cyclic olefins toward the goal of selectively forming α,ω-diene using cis-cyclooctene as a prototypical substrate. Dissymmetry at the N-heterocyclic carbene (NHC) ligand was identified as a key parameter for controlling the selectivity. The best-performing catalyst bearing an N-CF3 group significantly outperformed the benchmark second-generation Grubbs catalyst in the ethenolysis of cis-cyclooctene. Application of this optimal catalyst to the ethenolysis of various norbornenes allows the efficient synthesis of valuable diene intermediates in good yields. The observed ligand effect trends could be rationalized through univariate and multivariate parameter analysis involving steric and electronic descriptors of the NHC ligand in the form of the buried volume and the 77Se NMR chemical shift, in particular the σyy component of the shielding tensor of [Se(NHC)] model compounds, respectively. Natural chemical shift analysis of this chemical shielding tensor shows that σyy probes the π-acceptor property of the NHC ligand, the essential electronic parameter that drives the relative rate of degenerate metathesis and selectivity in ethenolysis with catalysts bearing dissymmetric NHC ligands.

20.
Heart Lung Circ ; 26(9): 894-901, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28601532

RESUMO

Genetic variation is an important determinant of atrial fibrillation (AF) susceptibility. Numerous rare variants in protein-coding sequences of genes have been associated with AF in families and in early-onset cases, and chromosomal loci harbouring common risk variants have been mapped in AF cohorts. Many of these loci are in non-coding regions of the human genome and are thought to contain regulatory sequences that modulate gene expression. Disease genes implicated to date have predominantly encoded cardiac ion channels, with predicted mutation effects on the atrial action potential duration. More recent studies have expanded the spectrum of disease-associated genes to include myocardial structural components and have highlighted an unsuspected role for cardiac transcription factors. These paradigm-shifting discoveries suggest that abnormalities of atrial specification arising during cardiac development might provide a template for AF in later adult life. With the escalating pace of variant discovery, there is an increasing need for mechanistic studies not only to evaluate single variants, but also to determine the collective effects of each person's burden of rare and common genetic variants, co-morbidities and lifestyle factors on the atrial substrate for arrhythmogenesis. Elucidation of an individual's genetic predisposition and modifiable environmental risk factors will facilitate personalised approaches to AF treatment.


Assuntos
Fibrilação Atrial/genética , Predisposição Genética para Doença , Canais Iônicos/genética , Fatores de Transcrição/genética , Fibrilação Atrial/metabolismo , Variação Genética , Humanos , Canais Iônicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...