Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
PLoS One ; 14(1): e0210435, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30645612

RESUMO

Floating objects drifting in the surface of tropical waters, also known as drifting fish aggregating devices (DFADs), attract hundreds of marine species, including tuna and non-tuna species. Industrial tropical purse seiners have been increasingly deploying artificial man-made DFADs equipped with satellite linked echo-sounder buoys, which provide fishers with information on the accurate geo-location of the object and rough estimates of the biomass aggregated underneath, to facilitate the catch of tuna. Although several hypotheses are under consideration to explain the aggregation and retention processes of pelagic species around DFADs, the reasons driving this associative behavior are uncertain. This study uses information from 962 echo-sounder buoys attached to virgin (i.e. newly deployed) DFADs deployed in the Western Indian Ocean between 2012 and 2015 by the Spanish fleet (42,322 days observations) to determine the first detection day of tuna and non-tuna species at DFAD and to model the aggregation processes of both species group using Generalize Additive Mixed Models. Moreover, different seasons, areas and depths of the DFAD underwater structure were considered in the analysis to account for potential spatio-temporal and structure differences. Results show that tuna species arrive at DFADs before non-tuna species (13.5±8.4 and 21.7±15.1 days, respectively), and provide evidence of the significant relationship between DFAD depth and detection time for tuna, suggesting faster tuna colonization in deeper objects. For non-tuna species, this relationship appeared to be not significant. The study also reveals both seasonal and spatial differences in the aggregation patterns for different species groups, suggesting that tuna and non-tuna species may have different aggregative behaviors depending on the spatio-temporal dynamic of DFADs. This work will contribute to the understanding of the fine and mesoscale ecology and behavior of target and non-target species around DFADs and will assist managers on the sustainability of exploited resources, helping to design spatio-temporal conservation management measures for tuna and non-tuna species.


Assuntos
Conservação dos Recursos Naturais/métodos , Pesqueiros , Peixes/fisiologia , Atum/fisiologia , Algoritmos , Animais , Biomassa , Ecologia , Ecossistema , Peixes/classificação , Geografia , Oceano Índico , Modelos Teóricos , Alimentos Marinhos , Estações do Ano
3.
PLoS One ; 12(2): e0171382, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28152032

RESUMO

This study presents a methodology for the automated analysis of commercial medium-range sonar signals for detecting presence/absence of bluefin tuna (Tunnus thynnus) in the Bay of Biscay. The approach uses image processing techniques to analyze sonar screenshots. For each sonar image we extracted measurable regions and analyzed their characteristics. Scientific data was used to classify each region into a class ("tuna" or "no-tuna") and build a dataset to train and evaluate classification models by using supervised learning. The methodology performed well when validated with commercial sonar screenshots, and has the potential to automatically analyze high volumes of data at a low cost. This represents a first milestone towards the development of acoustic, fishery-independent indices of abundance for bluefin tuna in the Bay of Biscay. Future research lines and additional alternatives to inform stock assessments are also discussed.


Assuntos
Pesqueiros , Atum , Animais , Oceano Atlântico , Vigilância da População/métodos , Som
4.
PLoS One ; 10(6): e0128247, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26090851

RESUMO

In the present study we have investigated the population genetic structure of albacore (Thunnus alalunga, Bonnaterre 1788) and assessed the loss of genetic diversity, likely due to overfishing, of albacore population in the North Atlantic Ocean. For this purpose, 1,331 individuals from 26 worldwide locations were analyzed by genotyping 75 novel nuclear SNPs. Our results indicated the existence of four genetically homogeneous populations delimited within the Mediterranean Sea, the Atlantic Ocean, the Indian Ocean and the Pacific Ocean. Current definition of stocks allows the sustainable management of albacore since no stock includes more than one genetic entity. In addition, short- and long-term effective population sizes were estimated for the North Atlantic Ocean albacore population, and results showed no historical decline for this population. Therefore, the genetic diversity and, consequently, the adaptive potential of this population have not been significantly affected by overfishing.


Assuntos
Estruturas Genéticas , Genética Populacional , Polimorfismo de Nucleotídeo Único , Atum/genética , Animais , Análise por Conglomerados , Evolução Molecular , Variação Genética , Genótipo , Geografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...