Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dig Dis Sci ; 67(10): 4654-4665, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35133532

RESUMO

Crohn's disease and ulcerative colitis are characterized by chronic inflammatory processes and an imbalanced immune response along the gastrointestinal (GI) tract. Pharmacological treatments have been widely used, although their long-term application has adverse side effects. On the other hand, milks fermented with specific lactic acid bacteria (LAB) have been shown to be useful as alternative or complementary aids. Many metabolites such as peptides, exopolysaccharides, and short-chain fatty acids are produced during milk fermentation. These components have been shown to change the pH of the gastrointestinal lumen, aid intestine mucosal recovery, modulate the microbiota, and reduce the inflammatory response (innate and adaptive immune system), both in vitro and in vivo. Therefore, the objective of the present review is to describe how these bioactive compounds from fermented milk by specific LAB can decrease the deleterious symptoms of inflammatory bowel disease.


Assuntos
Doenças Inflamatórias Intestinais , Leite , Animais , Ácidos Graxos Voláteis/metabolismo , Fermentação , Humanos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/metabolismo , Leite/metabolismo , Leite/microbiologia , Peptídeos
2.
Foods ; 12(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36613269

RESUMO

This study aimed to assess the potential antidepressant- and anxiolytic-like effects of huauzontle fermented by Lactiplantibacillus plantarum Lp22. The possible association between oxidative stress/inflammation biomarkers and unconditional behavioural tests was also evaluated. Red light-induced stress mice C57Bl/6 (n = 5 per group) received orally either fermented or unfermented huauzontle, diazepam or fluoxetine. A non-stressed group which received saline solution was also included. Then, anxiety-related and depression-related behaviour tests were performed; after that, blood and tissues samples were collected to determine oxidative stress/inflammation biomarkers. The mice receiving both fermented and unfermented huauzontle spent more time (94 s) in open arms in the elevated plus maze test p < 0.05; besides, travelled longer distance (p < 0.05) and increased by more than 50% the exploration time for the open field, as well as the time spent in the illuminated zone (197 s) in the light/dark test. Furthermore, reduced immobility time in the tail suspension and forced swim tests (23.1 and 15.85, respectively), and anhedonia was no detected in the sucrose preference test. The oxidative stress index was lower in the liver of fermented huauzontle-treated mice, while enhanced levels of IL-10, MCP-1 and BDNF in plasma, and lipoxygenase (LOX) activity in the hippocampus were found. Finally, PCA revealed a positive correlation among LOX and BDNF and parameters determined in the anxiety tests, as between catalase activity and immobility time in the depression test. These findings indicate the novel potential therapeutic applications of fermented huauzontle on depression and anxiety-like behaviours possibly mediated by antioxidant and anti-inflammatory mechanisms.

3.
Foods ; 10(10)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34681495

RESUMO

This study aims to analyze the chemical and microbial composition and characterize volatile compounds from the artisanal and commercial Tejuino beverage. For this, eight samples are analyzed (four artisanal and four commercial). The chemical and microbiological quality is determined by standard methods, and volatile compounds are determined by solid-phase microextraction. Overall, the physicochemical composition and microbiological quality are higher for artisanal Tejuino (p < 0.05). The pH values were 3.20 and 3.62, and 0.76 and 0.46 meq of lactic acid for artisanal and commercial Tejuino, respectively. With volatile compounds analyzed, esters, benzenes, and aldehydes were predominant; meanwhile, ethanol was a volatile compound with the highest concentration for all samples. Saccharomyces cerevisiae and Limosilactobacillus fermentum were identified in artisanal Tejuino; yeasts of the Pichia genera and Lactiplantibacillus plantarum, for commercial Tejuino, and Enterococcus genus were identified in both samples. The characterization of both types of Tejuino allows us to update the information available on this important Mexican beverage. In addition, the isolation of lactic acid bacteria, as representative bacteria of both drinks, offers an area of opportunity to know the potential functionality of these bacteria in traditional fermented products.

4.
J Sci Food Agric ; 101(12): 5049-5055, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33570782

RESUMO

BACKGROUND: Previous studies have demonstrated the acrylamide-removing properties of probiotic monocultures; however, potential advantages of consortia over monocultures in reducing the dietary exposure to acrylamide have not been proven. Hence this work aims to assess the acrylamide (AA)-binding properties of bacterial consortia, consisting of either probiotic strains and / or representative bacteria of duodenal microbiota, exposed to simulated gastrointestinal conditions (SGC). The AA binding capacity of ten probiotic strains (PS) and six duodenal strains (NDS) was evaluated under different conditions; then, three different consortia (PS, NDS, and PS + NDS) were assessed under SGC. RESULTS: Among individual PS, Bacillus coagulans GBI-30, Lactobacillus fermentum J23, L. pentosus J37 and J24, and L. casei Shirota, exhibited the highest AA-binding capacity (80-87%), while Bifidobacterium catenulatun ATCC27676, Streptococcus salivarius subsp. thermophilus ATCC19258, and S. gallolyticus ATCC9809 were the best (ca. 68%) NDS monocultures. Probiotic strain consortia showed higher (P < 0.05) AA binding capacity (> 90%) than monoculture bacteria. Conversely, individual NDS cultures displayed higher (P < 0.05) binding capacity than NDS consortia (60%). A significant reduction (P < 0.05) in AA removal capacity was observed when consortia were exposed to SGC, PS consortia being the most effective (> 60% removal). CONCLUSION: These results suggest that consortia of specific PS could play an important role in reducing the intestinal availability of acrylamide. © 2021 Society of Chemical Industry.


Assuntos
Acrilamida/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/microbiologia , Lactobacillus/metabolismo , Probióticos/farmacologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Avaliação Pré-Clínica de Medicamentos , Trato Gastrointestinal/metabolismo , Humanos , Lactobacillus/classificação , Lactobacillus/crescimento & desenvolvimento , Viabilidade Microbiana , Modelos Biológicos
5.
Probiotics Antimicrob Proteins ; 13(4): 1033-1043, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33512646

RESUMO

Studies have shown that the intracellular content of probiotic (postbiotics) has antioxidant properties, which can improve the antioxidant status in vivo. However, its absorption and mechanisms underlying the protective effects are still unknown. The antioxidant capacity of Lacticaseibacillus casei CRL431 (IC-431) postbiotics was determined after an in vitro simulated digestive process. Permeability of antioxidant constituents of IC-431 was determined by an ex vivo everted duodenum assay. Aflatoxin B1-induced oxidative stress rat models were established and treated with IC-431; biomarkers of hepatic mitochondrial function and H2O2 levels, oxidative stress, and oxidative stress index (OSi) were examined. The antioxidant capacity of IC-431 (477 ± 45.25 µmol Trolox Equivalent/L) was reduced by exposure to the simulated digestive process. No difference (p > 0.05) was found among digested and the permeate fraction of IC-431. A protective effect was observed by significantly lower OSi and higher liver glutathione peroxidase and catalase activities. Lower H2O2 production, a higher degree of mitochondrial uncoupling, and lower mitochondrial respiration coefficient were also observed (p < 0.05). These results suggest that IC-431 antioxidant components permeate intestinal barriers to enter the bloodstream and regulate antioxidant status during AFB1-induced oxidative stress by reducing hepatic mitochondrial dysfunction, thus enhancing antioxidant enzyme response.


Assuntos
Aflatoxina B1 , Lacticaseibacillus casei , Mitocôndrias , Estresse Oxidativo , Probióticos , Aflatoxina B1/toxicidade , Animais , Antioxidantes , Peróxido de Hidrogênio , Mitocôndrias/fisiologia , Ratos
6.
Food Res Int ; 137: 109750, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33233312

RESUMO

The practice of eating insects is not a new phenomenon; however, the interest for their consumption has increased in recent years due to their recognized nutritional value (high content of micro- and macronutrient), potential health benefits (presence of bioactive substances), and low-environmental impact (use of less resources and reduced pollution levels). Currently, research on insects has focused on the promotion of various processing technologies for their use as either ingredients (in a non-recognizable form) to the development of innovative products, or as sources of novel bioactive compounds. In this context, evidence has suggested that alternative technologies, particularly fermentation, could be used the obtain diverse insect-based ingredients/products with unique properties. Therefore, the purpose of this narrative review was to provide an overview of the available literature on fermentation applied to obtain new insect-based products, to summarize the patents and patent-applications to protect fermented edible insect products and processes, as well as to enlist examples of current available products in the market.


Assuntos
Insetos Comestíveis , Animais , Inocuidade dos Alimentos , Insetos , Valor Nutritivo , Estudos Prospectivos
7.
Nutrients ; 11(7)2019 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-31315186

RESUMO

The aim of this study was to evaluate the effect of milk fermented with Lactobacillus fermentum J20 (FMJ20) or J28 (FMJ28) on ameliorating indomethacin-induced inflammation. Twenty-eight male C57Bl/6 mice were divided into four experimental groups: indomethacin, indomethacin + FMJ20, indomethacin + FMJ28, and untreated (control). Groups were fed fermented milk for 15 days, followed by administration of indomethacin supplied in three sub-doses over experimental period. Body weight, and food consumption were recorded. Additionally, spleen, kidney, and liver were weighed, and the small intestine length was measured. The cytokines in serum (IL-2, IL-4, IL-6, IL-10, IL-17, IL-23 and TNFα) and in intestinal mucosa (IL-17 and IFNγ) were also determined. Compared to the control, all indomethacin-supplemented groups lost weight (~2.7 g; p < 0.05), but no changes were found in the organ-specific morphometry analysis. FMJ28 showed better results in attenuating serum and intestinal IL-17 levels. Furthermore, showed less epithelial cell loss and inflammatory infiltrates than the other indomethacin-treated groups. These results suggest that FMJ28 may be effective in reducing intestinal and systemic acute inflammation, specifically in mice.


Assuntos
Indometacina/toxicidade , Inflamação/induzido quimicamente , Enteropatias/induzido quimicamente , Limosilactobacillus fermentum/fisiologia , Animais , Anti-Inflamatórios não Esteroides/toxicidade , Citocinas/genética , Citocinas/metabolismo , Fermentação , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/terapia , Enteropatias/terapia , Intestinos/efeitos dos fármacos , Intestinos/patologia , Rim/efeitos dos fármacos , Rim/patologia , Fígado/efeitos dos fármacos , Fígado/patologia , Camundongos Endogâmicos C57BL , Leite , Tamanho do Órgão , Baço/efeitos dos fármacos , Baço/patologia
8.
Nutrients ; 10(8)2018 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-30096797

RESUMO

Currently, the effect of fermented milk on the T-helper 17 response in inflammatory bowel diseases (IBDs) is unknown. The aim of the present study was to evaluate the effect of milks fermented with Lactobacillus fermentum on the Th1/Th17 response in a murine model of mild IBD. Exopolysaccharide (EPS), lactic acid (LA), and total protein (TP) contents and bacterial concentration were determined. Male C57Bl/6 mice intragastrically received either raw (FM) or pasteurized (PFM) fermented milk before and during a dextran sulfate infusion protocol. Blood, spleen, and colon samples were collected at Weeks 6 and 10. IL-6, IL-10, and TNFα were determined in serum, and IL-17, IL-23, and IFNγ were determined in intestinal mucosa and serum. The FM groups did not differ in cell concentration, LA, or TP content (p > 0.05); FM-J28 had the highest EPS content. Spleen weight and colon length did not differ among the FM groups (p > 0.05). In the FM-J20 and PFM-J20 groups, IL-17 and IFNγ decreased, and the IL-10 concentration was enhanced (p < 0.05) at Week 6. IL-6, TNFα, IL-23, and IFNγ did not differ in serum and mucosa (p > 0.05), and IL-17 was lowest in FM-J28 and FM-J20. Therefore, FM appears to potentially play a role in decreasing the Th17 response. However, further studies are needed to elucidate the FM-mediated anti-inflammatory mechanisms in IBD.


Assuntos
Produtos Fermentados do Leite/microbiologia , Limosilactobacillus fermentum/fisiologia , Células Th17/imunologia , Animais , Citocinas/sangue , Citocinas/imunologia , Sulfato de Dextrana , Mediadores da Inflamação/sangue , Mediadores da Inflamação/imunologia , Doenças Inflamatórias Intestinais/sangue , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/microbiologia , Masculino , Camundongos Endogâmicos C57BL , Células Th1/imunologia , Células Th1/metabolismo , Células Th1/microbiologia , Células Th17/metabolismo , Células Th17/microbiologia
9.
J Dairy Sci ; 101(5): 3742-3757, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29477517

RESUMO

Traditionally, cheese is manufactured by converting fluid milk to a semisolid mass through the use of a coagulating agent, such as rennet, acid, heat plus acid, or a combination thereof. Cheese can vary widely in its characteristics, including color, aroma, texture, flavor, and firmness, which can generally be attributed to the production technology, source of the milk, moisture content, and length of aging, in addition to the presence of specific molds, yeast, and bacteria. Among the most important bacteria, lactic acid bacteria (LAB) play a critical role during the cheese-making process. In general, LAB contain cell-envelope proteinases that contribute to the proteolysis of cheese proteins, breaking them down into oligopeptides that can be subsequently taken up by cells via specific peptide transport systems or further degraded into shorter peptides and amino acids through the collaborative action of various intracellular peptidases. Such peptides, amino acids, and their derivatives contribute to the development of texture and flavor in the final cheese. In vitro and in vivo assays have demonstrated that specific sequences of released peptides exhibit biological properties including antioxidant, antimicrobial, anti-inflammatory, immunomodulatory, and analgesic/opioid activity, in addition to angiotensin-converting enzyme inhibition and antiproliferative activity. Some LAB also produce functional lipids (e.g., conjugated linoleic acid) with anti-inflammatory and anticarcinogenic activity, synthesize vitamins and antimicrobial peptides (bacteriocins), or release γ-aminobutyric acid, a nonprotein amino acid that participates in physiological functions, such as neurotransmission and hypotension induction, with diuretic effects. This review provides an overview of the main bioactive components present or released during the ripening process of different types of cheese.


Assuntos
Queijo/análise , Manipulação de Alimentos , Leite/química , Aminoácidos/análise , Aminoácidos/metabolismo , Animais , Manipulação de Alimentos/métodos , Humanos , Ácidos Linoleicos Conjugados/análise , Ácidos Linoleicos Conjugados/metabolismo , Paladar
10.
Protein Pept Lett ; 24(2): 137-145, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28017144

RESUMO

In recent years, major developments in the field of inflammatory pathophysiology have clearly shown that arthritis, diabetes, intestinal bowel diseases, and obesity, which affect many people around the world, are essentially inflammatory in nature. Different anti-inflammatory drugs have been used to treat these conditions. Some people are able to take these drugs without difficulty, yet others experience negative side effects. Hence, the search for new, natural anti-inflammatory alternatives has rapidly increased in recent years. Evidence has shown that food protein-derived peptides may be one alternative for treating inflammatory diseases. Peptides are encrypted in food proteins, can be released under hydrolysis conditions, and do not cause adverse effects. Despite limited information on the mechanism of action of peptides, in vitro and animal model studies have demonstrated their potential anti-inflammatory activity. Several in vitro studies have demonstrated that peptides can inhibit different pathways of inflammation processes such as that of the nuclear factor kappalight- chain of activated B cells (NF-κB). They can also induce the production of nitric oxide synthase (iNOs) and c-Jun N-terminal kinases (JNK) as well as influence PepT1 and CaRS, the transporters of peptides to the gastrointestinal tract that are responsible for the absorption of dietary peptides in the intestine. However, contradictory evidence has been reported in clinical assays. Hence, in this review, we present the latest research on the anti-inflammatory activity of food protein-derived peptides and provide future perspectives on the use of peptides as potential natural sources of therapeutic treatments.


Assuntos
Anti-Inflamatórios/farmacologia , Proteínas Alimentares/química , Inflamação/tratamento farmacológico , Peptídeos/farmacologia , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/uso terapêutico , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Inflamação/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , NF-kappa B/metabolismo , Peptídeos/química , Peptídeos/uso terapêutico , Proteólise
11.
J Sci Food Agric ; 96(11): 3631-41, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26940008

RESUMO

Food proteins contain specific amino acid sequences within their structures that may positively impact bodily functions and have multiple immunomodulatory effects. The functional properties of these specific sequences, also referred to as bioactive peptides, are revealed only after the degradation of native proteins during digestion processes. Currently, milk proteins have been the most explored source of bioactive peptides, which presents an interesting opportunity for the dairy industry. However, plant- and animal-derived proteins have also been shown to be important sources of bioactive peptides. This review summarizes the in vitro and in vivo evidence of the role of various food proteins as sources of immunomodulatory peptides and discusses the possible pathways involving these properties. © 2016 Society of Chemical Industry.


Assuntos
Dieta , Proteínas Alimentares/farmacologia , Sistema Imunitário/efeitos dos fármacos , Peptídeos/farmacologia , Sequência de Aminoácidos , Animais , Humanos , Proteínas do Leite/farmacologia , Proteínas de Plantas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...