Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(12): 8434-8444, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38476175

RESUMO

A chiral organic insulator, (R)-α-phenylethylammonium-oxalate (RAPEAO), was prepared in the forms of single-crystal, powder and spin-coated layers on silicon substrate surfaces modified by plasma treatment or a (3-aminopropyl)triethoxysilane (APTES) polymer layer. For spin-coated samples, different deposition conditions have been investigated - various thicknesses controlled by speed and the number of repeated cycles, deposited continuously or by a layer-by-layer technique. The chemistry of this compound did not allow the deposition of the continuous thin film, yet, it caused the formation of a few nuclei on the substrate surface. Modification of the substrate with low temperature plasma caused the increased number of nuclei as well as enabled the growth of the nanowires, which was confirmed by atomic force microscopy (AFM) images. The same effect has been observed from the X-ray diffraction (XRD) measurements, where preferential growth of the studied compound in one direction was confirmed by grazing incidence, as well as wide reciprocal space mapping (WRSM). XRD studies confirmed the structural similarity of the compound, disregarding the compound form ranging from nanowires on the substrate to the bulk. Finally, the substrate covered by APTES thin film has had increased coverage of the substrate surface by the studied compound. Impedance spectroscopy revealed that the electrical conductivity of the sample in bulk at 20 °C is 6.3 × 10-15 (Ω cm)-1, indicating the insulating properties of the material.

2.
Inorg Chem ; 62(42): 17219-17227, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37823905

RESUMO

A one-dimensional (1D) ladder-like coordination polymer {NH4[{Cu(bpy)}2(C2O4)Fe(C2O4)3]·H2O}n (1; bpy = 2,2'-bipyridine) containing [Cu(bpy)(µ-C2O4)Cu(bpy)]2+ cationic units linked by oxalate groups of [Fe(C2O4)3]3- building blocks was investigated as a new type of photoactive solid-state system. It exhibits a photocoloration effect when exposed to direct sunlight or UV/vis irradiation. The photochromic properties and mechanism were studied by powder and single-crystal X-ray diffraction, UV/vis diffuse reflectance, IR and electron paramagnetic resonance spectroscopy, magnetization and impedance measurements, and density functional theory calculations. The process of photochromism involves simultaneous intramolecular electron transfers from the oxalate ligand to Fe(III) and to [CuII(bpy)(µ-C2O4)CuII(bpy)]2+, leading to the reduction of the metal centers to the electronic states Fe(II) and Cu(I), accompanied by the release of gaseous CO2.

3.
Polymers (Basel) ; 14(19)2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-36235959

RESUMO

The aim of this study is to investigate the influence of different glass fibers made of commercial silicate, borosilicate, and laboratory-made iron-phosphate compositions, on the preparation of polylactic acid (PLA) composites and their structural and physical properties. The thermal, structural, and electrical properties of prepared PLA-glass fiber composites were studied using differential scanning calorimetry, X-ray diffraction, microscopy, and impedance spectroscopy. The structural as well as morphological, thermal, and electrical properties of all PLA-glass composites were found to be very similar and independent of the composition and aspect ratio of glass fibers. All types of glass fibers improve mechanical properties, increase thermal stability, and decrease the electrical conductivity of PLA, thereby producing mechanical strong electrically insulating composite material with potential in various applications.

4.
IUCrJ ; 9(Pt 4): 449-467, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35844480

RESUMO

Multicentre two-electron (mc/2e or 'pancake bonding') bonding between 7,7,8,8-tetra-cyano-quinodi-methane (TCNQ) radical anions was studied on its 14 novel salts with planar organic cations. The formal charges of the TCNQδ- moieties are -1/2 and -2/3, and they form mc/2e bonded dimers, trimers and tetramers which are further stacked into extended arrays. Multicentre bonding within these oligomers is characterized by short interplanar separations of 2.9-3.2 Å; distances between the oligomers are larger, typically >3.3 Å. The stacks are laterally connected by C-H⋯N hydrogen bonding, forming 2D arrays. The nature of mc/2e bonding is characterized by structural, magnetic and electrical data. The compounds are found to be semiconductors, and high conductivity [10-2 (Ω cm)-1] correlates with short interplanar distances between pancake-bonded oligomers.

5.
Nanomaterials (Basel) ; 12(2)2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35055258

RESUMO

A series of glass-ceramics were prepared by heat-treatments of 40Na2O-30MoO3-30P2O5 (in mol%) glass in a temperature range from 380 (Tg) to 490 °C (Tc) and for 1-24 h. The prepared glass-ceramics contain from 2 to 25 wt.% of crystalline NaMoO2PO4. The sodium-ion conductivity in these materials decreases up to one order of magnitude with an increase in the degree of crystallization due to the immobilization of sodium ions in crystalline NaMoO2PO4. The transport of sodium ions in these materials occurs primarily through the dominant continuous glassy phase, and it is weakly affected by the sporadically distributed crystalline grains. However, the prepared glass-ceramics exhibit high proton conductivity in a humid atmosphere and remarkable humidity-sensing properties; this could be related to crystalline NaMoO2PO4, which provides sites for water adsorption. The glass-ceramic prepared at 450 °C for 24 h shows the best humidity-sensing performance among all samples, showing an increase in proton conductivity for more than seven orders of magnitude with the increase in relative humidity from 0% to 95%. Under a highly humid atmosphere (95% relative humidity and 25 °C), the proton conductivity of this glass-ceramic reaches 5.2 × 10-3 (Ω cm)-1. Moreover, the electrical response of these materials on the change in the relative humidity is linear and reversible in the entire range of the relative humidity, which indicates that they are novel promising candidates for application as humidity sensors.

6.
Materials (Basel) ; 14(19)2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34639934

RESUMO

A novel one-dimensional (1D) oxalate-bridged coordination polymer of iron(III), {[NH(CH3)(C2H5)2][FeCl2(C2O4)]}n (1), exhibits remarkable humidity-sensing properties and very high proton conductivity at room temperature (2.70 × 10-4 (Ω·cm)-1 at 298 K under 93% relative humidity), in addition to the independent antiferromagnetic spin chains of iron(III) ions bridged by oxalate groups (J = -7.58(9) cm-1). Moreover, the time-dependent measurements show that 1 could maintain a stable proton conductivity for at least 12 h. Charge transport and magnetic properties were investigated by impedance spectroscopy and magnetization measurements, respectively. Compound 1 consists of infinite anionic zig-zag chains [FeCl2(C2O4)]nn- and interposed diethylmethylammonium cations (C2H5)2(CH3)NH+, which act as hydrogen bond donors toward carbonyl oxygen atoms. Extraordinarily, the studied coordination polymer exhibits two reversible phase transitions: from the high-temperature phase HT to the mid-temperature phase MT at T ~213 K and from the mid-temperature phase MT to the low-temperature phase LT at T ~120 K, as revealed by in situ powder and single-crystal X-ray diffraction. All three polymorphs show large linear thermal expansion coefficients.

7.
Phys Chem Chem Phys ; 23(16): 9761-9772, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33881071

RESUMO

Ion conducting oxide glasses are attractive materials for application in various electrochemical devices and an understanding of the structure-transport properties relationship is crucial for their development. An interesting effect of glass structure on the dynamics of mobile ions is the mixed glass-former effect which causes a non-linear change of ionic conductivity when glass-forming oxides get gradually substituted. Here, we report a strong, positive effect of structural changes on the conductivity of sodium ions in two glass systems 40Na2O-xMoO3-(60-x)P2O5 and 40Na2O-xWO3-(60-x)P2O5; x = 0-50 mol% where a conventional glass-forming oxide (P2O5) is gradually replaced by WO3/MoO3 which are conditional ones. In both glass systems, the compositional change in DC conductivity is non-linear, with the maximal increase of four orders of magnitude in the case of WO3 and three orders of magnitude in the case of MoO3. This significant enhancement of ionic conductivity is related to the formation of mixed phosphate-tungstate and phosphate-molybdate units in the glass network. The facilitating effect of these structural units on sodium ion dynamics is also observed in the changes of the shape of frequency-dependent conductivity and in the values of typical spatial extent of diffusion of sodium ions known as the Sidebottom length.

8.
Nanomaterials (Basel) ; 10(12)2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33333789

RESUMO

High electronically conductive tungsten phosphate glass-ceramics have been prepared by the controlled crystallization of binary 60WO3-40P2O5 glass in the temperature range from 700 to 935 °C and for 1 to 24 h. The substantial increase in the conductivity for four orders of magnitude is a result of the formation of electronically conductive W2O3(PO4)2 and WO3 phases. At low crystallization temperature the dominant W2O3(PO4)2 phase is created, whereas at 935 °C for 24 h the formation of semiconducting WO3 crystallites of an average size of 80 nm enhances the conductivity to the highest value of 1.64 × 10-4 (Ω cm)-1 at 30 °C. The course of the crystallization and its impact on this exceptionally high electronic transport of binary tungsten phosphate glass-ceramics has been discussed in detail. Since such highly electronically conductive WO3-based glass-ceramics have a great potential as cathode/anode materials in solid state batteries and as electrocatalysts in fuel cells, it is of interest to provide a novel insight into the improvement of their electrical properties.

9.
Inorg Chem ; 59(24): 18078-18089, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33289548

RESUMO

The heterodimetallic [CuFe] compounds [CuII4(terpy)4Cl5][FeIII(C2O4)3]·10H2O (1;terpy = 2,2':6',2''-terpyridine), [CuII2(H2O)2(terpy)2(C2O4)][CuIIFeIII(CH3OH)(terpy)(C2O4)3]2 (2), and {[Cu2IIFeIII(H2O)(terpy)2(C2O4)7/2]·6H2O}n (3) were obtained using building block approach, from reaction of aqueous solution of [Fe(C2O4)3]3- and a methanol solution containing Cu2+ ions and terpy by the layering technique. Interestingly, by changing only the anion of the starting salt of copper(II), Cu(NO3)2·3H2O instead of CuCl2·2H2O, an unexpected change in the type of bridge, oxalate (2 and 3) versus chloride (1), was achieved, thus affecting the overall structural architecture. Two polymorphs of 3D coordination polymer [CuIIFeII2(H2O)(terpy)(C2O4)3]n (4), crystallizing in the triclinic (a) and monoclinic (b) space groups, were formed hydrothermally, depending on whether CuCl2·2H2O or Cu(NO3)2·3H2O was added to the water, besides K3[Fe(C2O4)3]·3H2O and terpy, respectively. Under hydrothermal conditions iron(III) from initial building block is reduced to the divalent state, creating 2D honeycomb [FeII2(C2O4)3]n2n- layers, which are bridged by [Cu(H2O)(terpy)]2+ cations. Compounds were investigated by single-crystal X-ray diffraction, IR, and impedance spectroscopies, magnetization measurements, and density functional theory (DFT) calculations. In compounds 1 and 2, 0D magnetism is observed, with 1 having a ground-state spin of 1 due to different interactions through chloride bridges of Cu2+ ions in tetramer [CuII4(terpy)4Cl5]3+ and 2 showing strong antiferromagnetic coupling of Cu2+ ions mediated by oxalate ligand in [CuII2(H2O)2(terpy)2(C2O4)]2+ and weak ones between Cu2+ and Fe3+ ions through oxalate bridge in [CuIIFeIII(CH3OH)(terpy)(C2O4)3]-. Polymer 4 exhibits antiferromagnetic phase transition at 25 K: The [FeII2(C2O4)3]n2n- layers are antiferromagnetically ordered, and a small amount of interlayer interaction is transferred through [Cu(H2O)(terpy)]2+ cations via Oox-Cu-Oox bridges. Additionally, compounds 1 and 2 are electrical insulators, while 4a and 4b show proton conductivity.

10.
Materials (Basel) ; 13(11)2020 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-32486333

RESUMO

We report on the electrical properties of glasses with nominal composition xB2O3-(100-x)[40Fe2O3-60P2O5],x = 2-20, mol.%. The conduction transport in these glasses is polaronic and shows a strong dependence on Fe2O3 content and polaron number density. The changes in DC conductivity are found not to be directly related to B2O3, however structural changes induced by its addition impact frequency-dependent conductivity. All glasses obey Summerfield and Sidebottom procedures of scaling conductivity spectra indicating that the polaronic mechanism does not change with temperature. An attempt to produce a super-master curve revealed that shape of the conductivity dispersion is the same for glasses with up to 15.0 mol.% B2O3 but differs for glass with the highest B2O3 content. This result could be related to the presence of borate units in the glass network. Moreover, the spatial extent of localized polaron motions increases with the decrease of polaron number density, however, this increase shows a larger slope than for previously reported iron phosphate glasses most probably due to the influence of B2O3 on glass structure and formation of polarons. While Summerfield scaling procedure fails, Sidebottom scaling yields a super-master curve, which indicates that polaronic hopping lengths also change with changing polaron number density in these glasses.

11.
Inorg Chem ; 59(10): 6876-6883, 2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32330029

RESUMO

A molecule-based ferroelectric triethylmethylammonium tetrachloroferrate(III) ([N(C2H5)3CH3][FeCl4]) powder was designed as a multifunctional material exhibiting excellent multiple bistability. Prepared by the slow evaporation method at room temperature, the compound crystallizes in the non-centrosymmetric assembly of hexagonal symmetry (P63mc space group) which undergoes a reversible temperature-triggered phase transition pinpointed at 363 K to the centrosymmetric packing within the P63/mmc space group. Aside from the inseparable role of the symmetry-breaking process smoothly unveiled from the X-ray powder diffraction data, a striking change in the dielectric permittivity observed during the paraelectric-to-ferroelectric phase transition directly discloses the bistable dielectric behavior-an exceptionally high increase in the dielectric permittivity of about 360% at 100 kHz across the heating and cooling cycles is direct proof showing the highly desirable stimuli-responsive electric ordering in this improper ferroelectric architecture. Due to the magnetically modulated physical properties resulting in the coupling of magnetic and electric orderings, the flexible assembly of [N(C2H5)3CH3][FeCl4] could be used to boost the design and development of novel magnetoelectric devices.

12.
RSC Adv ; 10(29): 17070-17078, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35496933

RESUMO

Supramolecular ionogels composed of an ionic liquid (IL) immobilized in a network of self-assembled low-molecular weight molecules have been attracting considerable interest due to their applicability as smart electrolytes for various electrochemical applications. Despite considerable scientific effort in this field, the design of a mechanically and thermally stable yet highly conductive supramolecular ionogels still remains a challenge. In this article, we report on a series of novel ionogels of three ILs containing different cations (imidazolium/pyrrolidinium) and anions (tetrafluoroborate/bis(trifluoromethylsulfonyl)imide) prepared using (S,S)-bis(amino alcohol)oxamides as gelators. The gelation behaviour of the oxamide compound depends strongly on the structural features of amino alcohol substituents. Among them, (S,S)-bis(valinol)oxamide (capable of gelling all three ILs) and (S,S)-bis(phenylalaninol)oxamide (capable of gelling ILs based on bis(trifluoromethylsulfonyl)imide with a concentration as low as ≈0.2 wt%) are highly efficient. All investigated supramolecular ionogels retain the high ionic conductivity and ion diffusion coefficients of their parent IL, even for high gelator concentrations. Further, at low temperatures we observe an enhancement of the ionic conductivity in ionogels of (i) 1-butyl-3-methylimidazolium tetrafluoroborate which can be attributed to specific interactions between ionic species and gelator molecules and (ii) 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide due to inhibited crystallization. In contrast to ionic transport, mechanical strength of the ionogels shows a wider variation depending on the type and concentration of the oxamide gelator. Among all the ionogels, that of 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide prepared with 1 wt% (S,S)-bis(phenylalaninol)oxamide exhibits the best performance: optical transparency, stability over a wide temperature range, high conductivity and high mechanical strength. The results presented here reveal the versatile nature of bis(amino alcohol)oxamides as gelators and their high potential for preparing functionalized IL-based materials.

14.
Molecules ; 24(21)2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31683868

RESUMO

ZnO has prominent electron transport and optical properties, beneficial for photovoltaic application, but its surface is prone to the formation of defects. To overcome this problem, we deposited nanostructured TiO2 thin film on ZnO nanorods to form a stable shell. ZnO nanorods synthesized by wet-chemistry are single crystals. Three different procedures for deposition of TiO2 were applied. The influence of preparation methods and parameters on the structure, morphology, electrical and optical properties were studied. Nanostructured TiO2 shells show different morphologies dependent on deposition methods: (1) separated nanoparticles (by pulsed laser deposition (PLD) in Ar), (2) a layer with nonhomogeneous thickness (by PLD in vacuum or DC reactive magnetron sputtering), and (3) a homogenous thin layer along the nanorods (by chemical deposition). Based on the structural study, we chose the preparation parameters to obtain an anatase structure of the TiO2 shell. Impedance spectroscopy shows pure electron conductivity that was considerably better in all the ZnO@TiO2 than in bare ZnO nanorods or TiO2 layers. The best conductivity among the studied samples and the lowest activation energy was observed for the sample with a chemically deposited TiO2 shell. Higher transparency in the visible part of spectrum was achieved for the sample with a homogenous TiO2 layer along the nanorods, then in the samples with a layer of varying thickness.


Assuntos
Nanoestruturas/química , Nanotubos/química , Titânio/química , Óxido de Zinco/química , Espectroscopia Dielétrica , Condutividade Elétrica , Eletricidade , Lasers
15.
Dalton Trans ; 48(22): 7891-7898, 2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-31080984

RESUMO

Three heterometallic one-dimensional (1D) coordination polymers {A[CrCu2(bpy)2(C2O4)4]·H2O}n [A = K+ (1) and NH4+ (2); bpy = 2,2'-bipyridine] and [(Cr2O7)Cu2(C2O4)(phen)2]n (3; phen = 1,10-phenanthroline) with uncommon topology have been synthesized using a building block approach and characterized by single-crystal X-ray diffraction, IR and impedance spectroscopies, magnetization measurements, and DFT calculations. Due to the partial decomposition of the building block [Cr(C2O4)3]3-, all three compounds contain oxalate-bridged [Cu2(L)2(µ-C2O4)]2+ units [L = bpy (1 and 2) and phen (3)]. In compounds 1 and 2 these cations are mutually connected through oxalate groups from [Cr(C2O4)3]3-, thus forming ladder-like topologies. Unusually, three different bridging modes of the oxalate ligand are observed in these chains. In compound 3 copper(ii) ions from cationic units are bridged through the oxygen atoms of Cr2O72- anions in a novel ladder-like mode. Very strong antiferromagnetic coupling observed in all three compounds, determined from the magnetization measurements and confirmed by DFT calculations (J = -343, -371 and -340 cm-1 for 1, 2 and 3, respectively), appears between two copper(ii) ions interacting through the oxalate bridge.

16.
Chemistry ; 24(33): 8292-8297, 2018 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-29624761

RESUMO

The crystal structure of [4-damp])2 [Cl4 Q]3 (4-damp=4-dimethylamino-N-methylpyridinium, Cl4 Q=tetrachloroquinone) salt is built up from slipped columnar stacks of quinoid rings composed of closely bound trimers with the intra-trimer separation distance of 2.84 Šand total charge of -2 whereas the inter-trimer distance is 3.59 Å. The individual rings exhibit partial negative charges that are distributed unevenly among the three Cl4 Qs in the trimer. The strong interactions within a trimer (Cl4 Q)32- have a partially covalent character with two-electron/multicentered bonding, that is extended over three rings, plausibly termed as "pancake bonding". The electron pairing within this multicentre bond leads to the fact that the crystals are diamagnetic and act as insulators. The studies of the structure and nature of bonding are based on X-ray charge density analysis and density functional theory.

17.
Phys Chem Chem Phys ; 19(5): 3999-4009, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28106224

RESUMO

The electrical and dielectric properties of three series of glasses, xHfO2-(40 - x)Fe2O3-60P2O5, 0 ≤ x ≤ 8 mol%, xCeO2-(40 - x)Fe2O3-60P2O5, 0 ≤ x ≤ 8 mol%, and xHfO2-(38 - x)Fe2O3-2B2O3-60P2O5 2 ≤ x ≤ 6 mol%, have been investigated by impedance spectroscopy over a wide frequency and temperature range. As expected, these glasses exhibit polaronic conductivity which strongly depends on the fraction of ferrous ions, Fe2+/Fetot. Following a detailed discussion on the DC conductivity, we use the MIGRATION concept to model their conductivity spectra. It is found that in each series of glasses, the shape of the conductivity isotherms remains the same indicating that the time-temperature superposition principle is satisfied and that the mechanism of conductivity is the same. Returning to a model-free scaling procedure, namely Summerfield scaling, it is found that while conductivity isotherms for each composition yield a master curve, we need to suitably shift individual master curves on the frequency axis to generate a super-master curve. We examine the dependence of the DC conductivity and the shift factors on the number density of charge carriers. Next, using the fact that the dielectric strength of relaxation for each isotherm is well-defined in these systems, we scale the conductivity isotherms using the Sidebottom scaling procedure. This procedure yields a super-master curve, implying that length scales for polaronic transport also change with composition. Further, using the scaling features of permittivity spectra, we extract in a straightforward way the characteristic spatial extent of localized hopping of polarons and find that it decreases with increasing number density of charge carriers. The magnitude of these values obtained from permittivity spectra lies in the same range as those for the polaron radius calculated using the equation proposed by Bogomolov and Mirilin.

18.
Dent Mater ; 32(11): 1312-1321, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27524232

RESUMO

OBJECTIVES: To investigate the electrical properties of experimental light-curable composite materials based on amorphous calcium phosphate (ACP) with the admixture of silanized barium glass and silica fillers. METHODS: Short-term setting was investigated by impedance measurements at a frequency of 1kHz, while for the long-term setting the impedance spectra were measured consecutively over a frequency range of 0.05Hz to 1MHz for 24h. The analysis of electrical resistivity changes during curing allowed the extraction of relevant kinetic parameters. The impedance results were correlated to the degree of conversion assessed by Raman spectroscopy, water content determined by gravimetry, light transmittance measured by CCD spectrometer and microstructural features observed by scanning electron microscopy. RESULTS: ACP-based composites have shown higher immediate degree of conversion and less post-cure polymerization than the control composites, but lower polymerization rate. The polymerization rate assessed by impedance measurements correlated well with the light transmittance. The differences in the electrical conductivity values observed among the materials were correlated to the amount of water introduced into composites by the ACP filler. High correlation was found between the degree of conversion and electrical resistivity. Equivalent circuit modeling revealed two electrical contributions for the ACP-based composites and a single contribution for the control composites. SIGNIFICANCE: The impedance spectroscopy has proven a valuable method for gaining insight into various features of ACP-based composites. Better understanding of the properties of ACP-based composites should further the development of these promising bioactive materials.


Assuntos
Fosfatos de Cálcio/química , Resinas Compostas , Impedância Elétrica , Polimerização
19.
Chemistry ; 21(34): 12121-8, 2015 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-26178864

RESUMO

Supramolecular ionogels were prepared by the gelation of room-temperature ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIm][BF4 ]) with (S,S)-bis(leucinol)oxalamide. Remarkably, the ionic conductivity of solutions and ionogels with low gelator concentrations is higher than that of neat [BMIm][BF4 ]. On the basis of molecular dynamics simulations and quantum mechanical calculations, the origin of this phenomenon is attributed to the higher affinity of gelator molecules towards [BF4 ](-) ions, which reduces the electrostatic attraction between [BMIm](+) and [BF4 ](-) and thus increases their mobility. With increasing gelator concentration, the ionic conductivity decreases due to the formation of a denser gelator matrix, which hinders the pathways for ionic transport. However, even for very dense ionogels, this decrease is less than one order of magnitude relative to neat [BMIm][BF4 ], and thus they can be classified as highly conductive materials with strong potential for application as functional electrolytes.

20.
Inorg Chem ; 52(24): 14299-308, 2013 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-24283516

RESUMO

A novel heterometallic oxalate-based compound, {Ba2(H2O)5[TaO(C2O4)3]HC2O4}·H2O (1), was obtained by using an (oxalato)tantalate(V) aqueous solution as a source of the complex anion and characterized by X-ray single-crystal diffraction, IR spectroscopy, and thermal analysis. Compound 1 is a three-dimensional (3D) coordination polymer with the Ta atom connected to eight neighboring Ba atoms through the oxalate ligands and the oxo oxygen group. Thermal treatment of 1 up to 1200 °C leads to molecular precursor-to-material conversion that yields the mixed-metal γ-Ba4Ta2O9 phase. This high-temperature γ-Ba4Ta2O9 polymorph has the 6H-perovskite structure (space group P6(3)/m), in which the Ta2O9 face-sharing octahedral dimers are interconnected via corners to the regular BaO6 octahedra. To date, γ-Ba4Ta2O9 has never been obtained at room temperature, because of the reduction of symmetry (P6(3)/m → P2(1)/c) that usually occurs during the cooling. Spectroscopic, optical, photocatalytic, and electrical properties of the obtained γ-Ba4Ta2O9 phase were investigated. In addition to the experimental data, an absorption spectrum and band structure of the γ-Ba4Ta2O9 polymorph were calculated using density functional theory.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...