Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 17(38): 10708-15, 2011 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-22003514

RESUMO

Interchange between the nickel +2 and +3 oxidation states precisely controls the reversible rearrangement of the tris(2-pyridylthio)methanide (tptm) ligand in the organometallic nickel(II) complex [{Ni(µ-Br)-(tptm)}(2)] (2). Oxidation of 2 first gives the corresponding Ni(III) complex [{Ni(µ-Br)(tptm)}(2)][PF(6)](2) (4). However, in solution the tptm ligand in 4 slowly undergoes a rearrangement, in which the N and S atoms of one of the pyridylthiolate arms exchange Ni and C bonding partners, thereby resulting in an "N,S-confused" isomer of tptm in the product, [NiBr(bpttpm)]PF(6) (5; bpttpm= bis(2-pyridylthio)(2-thiopyridinium)-methyl). Reduction of 5 reverses this ligand rearrangement and 2 is reformed quantitatively. The individual steps involved in these unusual ligand rearrangements were investigated by a number of methods, including voltammetric analysis, and a mechanism for this process is proposed. X-ray crystal structure determinations of the key compounds 2, 4 and 5 have been obtained.

2.
Chem Commun (Camb) ; (11): 1314-6, 2008 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-18389118

RESUMO

Tris(2-pyridylthio)methane (tptmH) reacts with ZnCl(2) producing the Zn-C containing complex of [ZnCl(tptm)], whose cyclic voltammogram shows an irreversible oxidation peak at 0.2 V vs. E(0')(Fc(+/0)). DFT calculations suggested that 1e(-) oxidation should occur at the tptm ligand resulting in the cleavage of the Zn-C bond, leading to decomposition of the complex.

4.
Dalton Trans ; (11): 1374-6, 2006 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-16518505

RESUMO

Thiacalix[3]pyridine (Py3S3) consists of pyridines and bridging sulfur atoms producing a stable octahedral mononuclear Rh(II) complex [Rh(II)(Py3S3)2]2+ showing mutual Jahn-Teller effect, a metal based reversible redox couple of Rh(III/II) at 0.02 V vs. SCE and a g(perpendicular) > g(||) relationship in EPR measurements.

5.
Dalton Trans ; (19): 3179-86, 2005 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-16172643

RESUMO

A complete series of copper(ii) halide complexes [CuX(tptm)](X = F (), Cl (), Br (), I (); tptm = tris(2-pyridylthio)methyl) with a novel Cu(II)-C(sp(3)) bond has been prepared by the reactions of [Cu(tptm)(CH(3)CN)]PF(6)(.PF(6)) with corresponding halide sources of KF or n-Bu(4)NX (X = Cl, Br, I), and the trigonal bipyramidal structures have been confirmed by X-ray crystallography and/or EPR spectroscopy. The iodide complex easily liberates the iodide anion in acetonitrile forming the acetonitrile complex as a result. The EPR spectra of the complexes showed several superhyperfine structures that strongly indicated the presence of spin density on the halide ligands through the Cu-X bond. The results of DFT calculations essentially matched with the X-ray crystallographic and the EPR spectroscopic results. Cyclic voltammetry revealed a quasi-reversible reduction wave for Cu(II)/Cu(I) indicating a trigonal pyramidal coordination for Cu(I) states. A coincidence of the redox potential for all [CuX(tptm)](0/+) processes indicates that the main oxidation site in each complex is the tptm ligand.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...