Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 7701, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38052808

RESUMO

Forecasting weather has become commonplace, but as society faces novel and uncertain environmental conditions there is a critical need to forecast ecology. Forewarning of ecosystem conditions during climate extremes can support proactive decision-making, yet applications of ecological forecasts are still limited. We showcase the capacity for existing marine management tools to transition to a forecasting configuration and provide skilful ecological forecasts up to 12 months in advance. The management tools use ocean temperature anomalies to help mitigate whale entanglements and sea turtle bycatch, and we show that forecasts can forewarn of human-wildlife interactions caused by unprecedented climate extremes. We further show that regionally downscaled forecasts are not a necessity for ecological forecasting and can be less skilful than global forecasts if they have fewer ensemble members. Our results highlight capacity for ecological forecasts to be explored for regions without the infrastructure or capacity to regionally downscale, ultimately helping to improve marine resource management and climate adaptation globally.


Assuntos
Clima , Ecossistema , Humanos , Tempo (Meteorologia) , Temperatura , Previsões , Mudança Climática
2.
Sci Data ; 10(1): 496, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37500662

RESUMO

The California Current Trophic Database (CCTD) was developed at NOAA Southwest Fisheries Science Center in collaboration with numerous diet data contributors. We compiled the CCTD from twenty-four data sets, representing both systematic collections and directed trophic studies. Diet composition data, including stomach and scat samples, were obtained from 105,694 individual predators among 143 taxa collected throughout the California Current Large Marine Ecosystem (CCLME) from 1967-2019. Predator taxa consist of squids (n = 5), elasmobranchs (n = 13), bony fishes (n = 118), and marine mammals (n = 7). Extensive time series are available for some predators (e.g., California Sea Lion, Pacific Hake, Chinook Salmon). The CCTD represents the largest compilation of raw trophic data within the CCLME, allowing for more refined analyses and modeling studies within this region. Our intention is to further augment and periodically update the dataset as additional historical or contemporary data become available to increase its utility and impact.


Assuntos
Ecossistema , Peixes , Animais , Mamíferos , Estado Nutricional , California
3.
Proc Biol Sci ; 290(1992): 20222326, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36750186

RESUMO

Forage fishes are key energy conduits that transfer primary and secondary productivity to higher trophic levels. As novel environmental conditions caused by climate change alter ecosystems and predator-prey dynamics, there is a critical need to understand how forage fish control bottom-up forcing of food web dynamics. In the northeast Pacific, northern anchovy (Engraulis mordax) is an important forage species with high interannual variability in population size that subsequently impacts the foraging and reproductive ecology of marine predators. Anchovy habitat suitability from a species distribution model (SDM) was assessed as an indicator of the diet, distribution and reproduction of four predator species. Across 22 years (1998-2019), this anchovy ecosystem indicator (AEI) was significantly positively correlated with diet composition of all species and the distribution of common murres (Uria aalge), Brandt's cormorants (Phalacrocorax penicillatus) and California sea lions (Zalophus californianus), but not rhinoceros auklets (Cerorhinca monocerata). The capacity for the AEI to explain variability in predator reproduction varied by species but was strongest with cormorants and sea lions. The AEI demonstrates the utility of forage SDMs in creating ecosystem indicators to guide ecosystem-based management.


Assuntos
Charadriiformes , Ecossistema , Animais , Cadeia Alimentar , Aves , Peixes , Reprodução
4.
Ecol Appl ; 33(2): e2794, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36484787

RESUMO

Fluctuations in prey abundance, composition, and distribution can impact predators, and when predators and fisheries target the same species, predators become essential to ecosystem-based management. Because of the difficulty in collecting concomitant predator-prey data at appropriate scales in patchy environments, few studies have identified strong linkages between cetaceans and prey, especially across large geographic areas. During summer 2018, a line-transect survey for cetaceans and coastal pelagic species was conducted over the continental shelf and slope of British Columbia, Canada, and the US West Coast, allowing for a large-scale investigation of predator-prey spatial relationships. We report on a case study of humpback whales (Megaptera novaeangliae) and their primary prey-Pacific herring (Clupea pallasii), northern anchovy (Engraulis mordax), and krill-using generalized additive models to explore the relationships between whale abundance on 10-km transect segments and prey metrics. Prey metrics included direct measures of biomass densities on segments and an original hotspot metric. For each prey species, segments in the upper fifth percentile for biomass density (across all segments) were designated hotspots, and whale counts on a segment were evaluated for their relationship to number of hotspot segments (species-specific and multispecies) within 25, 50, or 100 km. Whale abundance was not strongly related to direct measures of biomass densities, whereas models using hotspot metrics were more effective at describing variation in whale abundance, underscoring that evaluating prey at relevant and measurable scales is critical in patchy, dynamic marine environments. Our analysis highlighted differences in the distribution and prey availability for three humpback whale distinct population segments (DPSs) as defined under the US Endangered Species Act, including threatened and endangered DPSs that forage within the California Current Large Marine Ecosystem. These linkages provide insights into which prey species whales may be targeting in different regions and across multiple scales and, consequently, how climatic variability and anthropogenic risks may differentially impact these distinct predator-prey assemblages. By identifying scale-appropriate prey hotspots that co-occur with humpback whale aggregations, and with targeted, consistent prey sampling and estimations of potential consumption rates by whales, these findings can help inform the conservation and management of humpback whales within an ecosystem-based management framework.


Assuntos
Ecossistema , Jubarte , Animais , Estações do Ano , Biomassa , Colúmbia Britânica , Peixes
5.
Sci Rep ; 12(1): 21554, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36513681

RESUMO

Whale entanglements with fishing gear, exacerbated by changing environmental conditions, pose significant risk to whale populations. Management tools used to reduce entanglement risk, for example temporary area restrictions on fishing, can have negative economic consequences for fishing communities. Balancing whale protection with sustaining productive fisheries is therefore a challenge experienced worldwide. In the California Current Ecosystem, ecosystem indicators have been used to understand the environmental dynamics that lead to increased whale entanglement risk in a lucrative crab fishery. However, an assessment of socio-economic risk for this fishery, as in many other regions, is missing. We estimate retrospectively the losses from ex-vessel revenue experienced by commercial Dungeness crab fishers in California during two seasons subject to whale entanglement mitigation measures using a Linear-Cragg hurdle modeling approach which incorporated estimates of pre-season crab abundance. In the 2020 fishing season, our results suggest total revenues would have been $14.4 million higher in the Central Management Area of California in the absence of closures and other disturbances. In the 2019 fishing season, our results suggest ex-vessel revenues would have been $9.4 million higher in the Central Management Area and $0.3 million higher in the Northern Management Area. Our evaluation should motivate the development of strategies which maximize whale protection whilst promoting productive, sustainable and economically-viable fisheries.


Assuntos
Braquiúros , Pesqueiros , Animais , Baleias , Ecossistema , Estudos Retrospectivos , Estações do Ano , Conservação dos Recursos Naturais/métodos
6.
Nat Commun ; 12(1): 6492, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34764244

RESUMO

The COVID-19 pandemic caused unprecedented cancellations of fisheries and ecosystem-assessment surveys, resulting in a recession of observations needed for management and conservation globally. This unavoidable reduction of survey data poses challenges for informing biodiversity and ecosystem functioning, developing future stock assessments of harvested species, and providing strategic advice for ecosystem-based management. We present a diversified framework involving integration of monitoring data with empirical models and simulations to inform ecosystem status within the California Current Large Marine Ecosystem. We augment trawl observations collected from a limited fisheries survey with survey effort reduction simulations, use of seabird diets as indicators of fish abundance, and krill species distribution modeling trained on past observations. This diversified approach allows for evaluation of ecosystem status during data-poor situations, especially during the COVID-19 era. The challenges to ecosystem monitoring imposed by the pandemic may be overcome by preparing for unexpected effort reduction, linking disparate ecosystem indicators, and applying new species modeling techniques.


Assuntos
COVID-19/epidemiologia , Conservação dos Recursos Naturais/métodos , Pesqueiros/estatística & dados numéricos , SARS-CoV-2/patogenicidade , Animais , Biodiversidade , COVID-19/transmissão , COVID-19/virologia , Bases de Dados Factuais , Ecossistema , Monitoramento Ambiental/métodos , Peixes , Cadeia Alimentar , Modelos Estatísticos , SARS-CoV-2/isolamento & purificação
7.
PLoS One ; 16(5): e0251638, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34043656

RESUMO

Rockfish are an important component of West Coast fisheries and California Current food webs, and recruitment (cohort strength) for rockfish populations has long been characterized as highly variable for most studied populations. Research efforts and fisheries surveys have long sought to provide greater insights on both the environmental drivers, and the fisheries and ecosystem consequences, of this variability. Here, variability in the temporal and spatial abundance and distribution patterns of young-of-the-year (YOY) rockfishes are described based on midwater trawl surveys conducted throughout the coastal waters of California Current between 2001 and 2019. Results confirm that the abundance of winter-spawning rockfish taxa in particular is highly variable over space and time. Although there is considerable spatial coherence in these relative abundance patterns, there are many years in which abundance patterns are very heterogeneous over the scale of the California Current. Results also confirm that the high abundance levels of YOY rockfish observed during the 2014-2016 large marine heatwave were largely coastwide events. Species association patterns of pelagic YOY for over 20 rockfish taxa in space and time are also described. The overall results will help inform future fisheries-independent surveys, and will improve future indices of recruitment strength used to inform stock assessment models and marine ecosystem status reports.


Assuntos
Distribuição Animal , Monitorização de Parâmetros Ecológicos/estatística & dados numéricos , Pesqueiros/estatística & dados numéricos , Perciformes/fisiologia , Estações do Ano , Animais , California , Conservação dos Recursos Naturais/estatística & dados numéricos , Cadeia Alimentar , Análise Espaço-Temporal
8.
Biol Lett ; 16(12): 20200645, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33321063

RESUMO

Estimating when and where survival bottlenecks occur in free-ranging marine predators is critical for effective demographic monitoring and spatial planning. This is particularly relevant to juvenile stages of long-lived species for which direct observations of death are typically not possible. We used satellite telemetry data from fledgling Adélie, chinstrap and gentoo penguins near the Antarctic Peninsula to estimate the spatio-temporal scale of a bottleneck after fledging. Fledglings were tracked up to 106 days over distances of up to 2140 km. Cumulative losses of tags increased to 73% within 16 days of deployment, followed by an order-of-magnitude reduction in loss rates thereafter. The timing and location of tag losses were consistent with at-sea observations of penguin carcasses and bioenergetics simulations of mass loss to thresholds associated with low recruitment probability. A bootstrapping procedure is used to assess tag loss owing to death versus other factors. Results suggest insensitivity in the timing of the bottleneck and quantify plausible ranges of mortality rates within the bottleneck. The weight of evidence indicates that a survival bottleneck for fledgling penguins is acute, attributable to predation and starvation, and may account for at least 33% of juvenile mortality.


Assuntos
Spheniscidae , Animais , Regiões Antárticas
9.
Geophys Res Lett ; 47(13): e2020GL088039, 2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32728303

RESUMO

In the California Current Ecosystem, krill represent a key link between primary production and higher trophic level species owing to their central position in the food web and tendency to form dense aggregations. However, the strongly advective circulation associated with coastal upwelling may decouple the timing, occurrence, and persistence of krill hotspots from phytoplankton biomass and nutrient sources. Results from a coupled physical-biological model provide insights into fundamental mechanisms controlling the phenology of krill hotspots in the California Current Ecosystem, and their sensitivity to alongshore changes in coastal upwelling intensity. The simulation indicates that dynamics controlling krill hotspot formation, intensity, and persistence on seasonal and interannual timescales are strongly heterogeneous and related to alongshore variations in upwelling-favorable winds, primary production, and ocean currents. Furthermore, regions promoting persistent krill hotspot formation coincide with increased observed abundance of top predators, indicating that the model resolves important ecosystem complexity and function.

10.
Nat Commun ; 11(1): 536, 2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-31988285

RESUMO

Climate change and increased variability and intensity of climate events, in combination with recovering protected species populations and highly capitalized fisheries, are posing new challenges for fisheries management. We examine socio-ecological features of the unprecedented 2014-2016 northeast Pacific marine heatwave to understand the potential causes for record numbers of whale entanglements in the central California Current crab fishery. We observed habitat compression of coastal upwelling, changes in availability of forage species (krill and anchovy), and shoreward distribution shift of foraging whales. We propose that these ecosystem changes, combined with recovering whale populations, contributed to the exacerbation of entanglements throughout the marine heatwave. In 2016, domoic acid contamination prompted an unprecedented delay in the opening of California's Dungeness crab fishery that inadvertently intensified the spatial overlap between whales and crab fishery gear. We present a retroactive assessment of entanglements to demonstrate that cooperation of fishers, resource managers, and scientists could mitigate future entanglement risk by developing climate-ready fisheries approaches, while supporting thriving fishing communities.


Assuntos
Comportamento Animal , Mudança Climática , Jubarte/fisiologia , Animais , Biodiversidade , Conservação dos Recursos Naturais , Ecossistema , Comportamento de Retorno ao Território Vital , Temperatura Alta , Jubarte/lesões , Densidade Demográfica
11.
PLoS One ; 14(9): e0222456, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31525231

RESUMO

This study examines the occurrence of humpback whale (Megaptera novaeangliae) song in the northeast Pacific from three years of continuous recordings off central California (36.713°N, 122.186°W). Song is prevalent in this feeding and migratory habitat, spanning nine months of the year (September-May), peaking in winter (November-January), and reaching a maximum of 86% temporal coverage (during November 2017). From the rise of song in fall through the end of peak occurrence in winter, song length increases significantly from month to month. The seasonal peak in song coincides with the seasonal trough in day length and sighting-based evidence of whales leaving Monterey Bay, consistent with seasonal migration. During the seasonal song peak, diel variation shows maximum occurrence at night (69% of the time), decreasing during dawn and dusk (52%), and further decreasing with increasing solar elevation during the day, reaching a minimum near solar noon (30%). Song occurrence increased 44% and 55% between successive years. Sighting data within the acoustic detection range of the hydrophone indicate that variation in local population density was an unlikely cause of this large interannual variation. Hydrographic data and modeling of acoustic transmission indicate that changes in neither habitat occupancy nor acoustic transmission were probable causes. Conversely, the positive interannual trend in song paralleled major ecosystem variations, including similarly large positive trends in wind-driven upwelling, primary productivity, and krill abundance. Further, the lowest song occurrence during the first year coincided with anomalously warm ocean temperatures and an extremely toxic harmful algal bloom that affected whales and other marine mammals in the region. These major ecosystem variations may have influenced the health and behavior of humpback whales during the study period.


Assuntos
Migração Animal/fisiologia , Jubarte/fisiologia , Vocalização Animal/fisiologia , Animais , California , Ecossistema , Densidade Demográfica , Estações do Ano , Temperatura
12.
Sci Rep ; 8(1): 7579, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29765085

RESUMO

Submarine canyon systems are ubiquitous features of marine ecosystems, known to support high levels of biodiversity. Canyons may be important to benthic-pelagic ecosystem coupling, but their role in concentrating plankton and structuring pelagic communities is not well known. We hypothesize that at the scale of a large marine ecosystem, canyons provide a critical habitat network, which maintain energy flow and trophic interactions. We evaluate canyon characteristics relative to the distribution and abundance of krill, critically important prey in the California Current Ecosystem. Using a geological database, we conducted a census of canyon locations, evaluated their dimensions, and quantified functional relationships with krill hotspots (i.e., sites of persistently elevated abundance) derived from hydro-acoustic surveys. We found that 76% of krill hotspots occurred within and adjacent to canyons. Most krill hotspots were associated with large shelf-incising canyons. Krill hotspots and canyon dimensions displayed similar coherence as a function of latitude and indicate a potential regional habitat network. The latitudinal migration of many fish, seabirds and mammals may be enhanced by using this canyon-krill network to maintain foraging opportunities. Biogeographic assessments and predictions of krill and krill-predator distributions under climate change may be improved by accounting for canyons in habitat models.

13.
Ecol Appl ; 27(2): 560-574, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27862556

RESUMO

Human impacts (e.g., fishing, pollution, and shipping) on pelagic ecosystems are increasing, causing concerns about stresses on marine food webs. Maintaining predator-prey relationships through protection of pelagic hotspots is crucial for conservation and management of living marine resources. Biotic components of pelagic, plankton-based, ecosystems exhibit high variability in abundance in time and space (i.e., extreme patchiness), requiring investigation of persistence of abundance across trophic levels to resolve trophic hotspots. Using a 26-yr record of indicators for primary production, secondary (zooplankton and larval fish), and tertiary (seabirds) consumers, we show distributions of trophic hotspots in the southern California Current Ecosystem result from interactions between a strong upwelling center and a productive retention zone with enhanced nutrients, which concentrate prey and predators across multiple trophic levels. Trophic hotspots also overlap with human impacts, including fisheries extraction of coastal pelagic and groundfish species, as well as intense commercial shipping traffic. Spatial overlap of trophic hotspots with fisheries and shipping increases vulnerability of the ecosystem to localized depletion of forage fish, ship strikes on marine mammals, and pollution. This study represents a critical step toward resolving pelagic areas of high conservation interest for planktonic ecosystems and may serve as a model for other ocean regions where ecosystem-based management and marine spatial planning of pelagic ecosystems is warranted.


Assuntos
Comércio , Pesqueiros , Cadeia Alimentar , Atividades Humanas , Animais , California , Ecossistema , Oceano Pacífico , Navios
14.
Biol Lett ; 12(9)2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27651532

RESUMO

Timing of spring sea-ice retreat shapes the southeast Bering Sea food web. We compared summer seabird densities and average bathymetry depth distributions between years with early (typically warm) and late (typically cold) ice retreat. Averaged over all seabird species, densities in early-ice-retreat-years were 10.1% (95% CI: 1.1-47.9%) of that in late-ice-retreat-years. In early-ice-retreat-years, surface-foraging species had increased numbers over the middle shelf (50-150 m) and reduced numbers over the shelf slope (200-500 m). Pursuit-diving seabirds showed a less clear trend. Euphausiids and the copepod Calanus marshallae/glacialis were 2.4 and 18.1 times less abundant in early-ice-retreat-years, respectively, whereas age-0 walleye pollock Gadus chalcogrammus near-surface densities were 51× higher in early-ice-retreat-years. Our results suggest a mechanistic understanding of how present and future changes in sea-ice-retreat timing may affect top predators like seabirds in the southeastern Bering Sea.


Assuntos
Aves/fisiologia , Cadeia Alimentar , Camada de Gelo , Estações do Ano , Animais , Regiões Árticas , Copépodes , Ecossistema , Euphausiacea , Gadiformes , Oceano Pacífico , Zooplâncton
15.
PLoS One ; 9(6): e99758, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24967973

RESUMO

During the past century, commercial fisheries have expanded from small vessels fishing in shallow, coastal habitats to a broad suite of vessels and gears that fish virtually every marine habitat on the globe. Understanding how fisheries have developed in space and time is critical for interpreting and managing the response of ecosystems to the effects of fishing, however time series of spatially explicit data are typically rare. Recently, the 1933-1968 portion of the commercial catch dataset from the California Department of Fish and Wildlife was recovered and digitized, completing the full historical series for both commercial and recreational datasets from 1933-2010. These unique datasets include landing estimates at a coarse 10 by 10 minute "grid-block" spatial resolution and extends the entire length of coastal California up to 180 kilometers from shore. In this study, we focus on the catch history of groundfish which were mapped for each grid-block using the year at 50% cumulative catch and total historical catch per habitat area. We then constructed generalized linear models to quantify the relationship between spatiotemporal trends in groundfish catches, distance from ports, depth, percentage of days with wind speed over 15 knots, SST and ocean productivity. Our results indicate that over the history of these fisheries, catches have taken place in increasingly deeper habitat, at a greater distance from ports, and in increasingly inclement weather conditions. Understanding spatial development of groundfish fisheries and catches in California are critical for improving population models and for evaluating whether implicit stock assessment model assumptions of relative homogeneity of fisheries removals over time and space are reasonable. This newly reconstructed catch dataset and analysis provides a comprehensive appreciation for the development of groundfish fisheries with respect to commonly assumed trends of global fisheries patterns that are typically constrained by a lack of long-term spatial datasets.


Assuntos
Pesqueiros/história , California , Ecossistema , Produtos Pesqueiros/economia , Pesqueiros/estatística & dados numéricos , História do Século XIX , História do Século XX , História do Século XXI
16.
Ecol Appl ; 24(7): 1730-47, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-29210234

RESUMO

Studies of predator­prey demographic responses and the physical drivers of such relationships are rare, yet essential for predicting future changes in the structure and dynamics of marine ecosystems. Here, we hypothesize that predator­prey relationships vary spatially in association with underlying physical ocean conditions, leading to observable changes in demographic rates, such as reproduction. To test this hypothesis, we quantified spatio-temporal variability in hydrographic conditions, krill, and forage fish to model predator (seabird) demographic responses over 18 years (1990­2007). We used principal component analysis and spatial correlation maps to assess coherence among ocean conditions, krill, and forage fish, and generalized additive models to quantify interannual variability in seabird breeding success relative to prey abundance. The first principal component of four hydrographic measurements yielded an index that partitioned "warm/weak upwelling" and "cool/strong upwelling" years. Partitioning of krill and forage fish time series among shelf and oceanic regions yielded spatially explicit indicators of prey availability. Krill abundance within the oceanic region was remarkably consistent between years, whereas krill over the shelf showed marked interannual fluctuations in relation to ocean conditions. Anchovy abundance varied on the shelf, and was greater in years of strong stratification, weak upwelling and warmer temperatures. Spatio-temporal variability of juvenile forage fish co-varied strongly with each other and with krill, but was weakly correlated with hydrographic conditions. Demographic responses between seabirds and prey availability revealed spatially variable associations indicative of the dynamic nature of "predator­habitat" relationships. Quantification of spatially explicit demographic responses, and their variability through time, demonstrate the possibility of delineating specific critical areas where the implementation of protective measures could maintain functions and productivity of central place foraging predators.


Assuntos
Charadriiformes/fisiologia , Euphausiacea/fisiologia , Peixes/fisiologia , Comportamento Predatório/fisiologia , Animais , Oceano Pacífico , Dinâmica Populacional , Salinidade , Água do Mar , Temperatura , Fatores de Tempo
17.
Glob Chang Biol ; 19(6): 1662-75, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23504918

RESUMO

Changes in variance are infrequently examined in climate change ecology. We tested the hypothesis that recent high variability in demographic attributes of salmon and seabirds off California is related to increasing variability in remote, large-scale forcing in the North Pacific operating through changes in local food webs. Linear, indirect numerical responses between krill (primarily Thysanoessa spinifera) and juvenile rockfish abundance (catch per unit effort (CPUE)) explained >80% of the recent variability in the demography of these pelagic predators. We found no relationships between krill and regional upwelling, though a strong connection to the North Pacific Gyre Oscillation (NPGO) index was established. Variance in NPGO and related central Pacific warming index increased after 1985, whereas variance in the canonical ENSO and Pacific Decadal Oscillation did not change. Anthropogenic global warming or natural climate variability may explain recent intensification of the NPGO and its increasing ecological significance. Assessing non-stationarity in atmospheric-environmental interactions and placing greater emphasis on documenting changes in variance of bio-physical systems will enable insight into complex climate-marine ecosystem dynamics.


Assuntos
Mudança Climática , Ecossistema , Animais , Biodiversidade , California , Cadeia Alimentar , Oceano Pacífico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...