Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
mBio ; 14(5): e0093723, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37737636

RESUMO

IMPORTANCE: The key atherosclerotic TMAO originates from the initial gut microbial conversion of L-carnitine and other dietary compounds into TMA. Developing therapeutic strategies to block gut microbial TMA production needs a detailed understanding of the different production mechanisms and their relative contributions. Recently, we identified a two-step anaerobic pathway for TMA production from L-carnitine through initial conversion by some microbes into the intermediate γBB which is then metabolized by other microbes into TMA. Investigational studies of this pathway, however, are limited by the lack of single microbes harboring the whole pathway. Here, we engineered E. fergusonii strain to harbor the whole two-step pathway and optimized the expression through cloning a specific chaperone from the original host. Inoculating germ-free mice with this recombinant E. fergusonii is enough to raise serum TMAO to pathophysiological levels upon L-carnitine feeding. This engineered microbe will facilitate future studies investigating the contribution of this pathway to cardiovascular disease.


Assuntos
Carnitina , Metilaminas , Camundongos , Animais , Anaerobiose , Modelos Animais de Doenças , Carnitina/metabolismo , Metilaminas/metabolismo , Redes e Vias Metabólicas/genética , Colina/metabolismo
2.
J Vis Exp ; (176)2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34723953

RESUMO

Diverse bacterial species secrete ~20-300 nm extracellular vesicles (EVs), comprised of lipids, proteins, nucleic acids, glycans, and other molecules derived from the parental cells. EVs function as intra- and inter-species communication vectors while also contributing to the interaction between bacteria and host organisms in the context of infection and colonization. Given the multitude of functions attributed to EVs in health and disease, there is a growing interest in isolating EVs for in vitro and in vivo studies. It was hypothesized that the separation of EVs based on physical properties, namely size, would facilitate the isolation of vesicles from diverse bacterial cultures. The isolation workflow consists of centrifugation, filtration, ultrafiltration, and size-exclusion chromatography (SEC) for the isolation of EVs from bacterial cultures. A pump-driven tangential flow filtration (TFF) step was incorporated to enhance scalability, enabling the isolation of material from liters of starting cell culture. Escherichia coli was used as a model system expressing EV-associated nanoluciferase and non-EV-associated mCherry as reporter proteins. The nanoluciferase was targeted to the EVs by fusing its N-terminus with cytolysin A. Early chromatography fractions containing 20-100 nm EVs with associated cytolysin A - nanoLuc were distinct from the later fractions containing the free proteins. The presence of EV-associated nanoluciferase was confirmed by immunogold labeling and transmission electron microscopy. This EV isolation workflow is applicable to other human gut-associated gram-negative and gram-positive bacterial species. In conclusion, combining centrifugation, filtration, ultrafiltration/TFF, and SEC enables scalable isolation of EVs from diverse bacterial species. Employing a standardized isolation workflow will facilitate comparative studies of microbial EVs across species.


Assuntos
Escherichia coli , Vesículas Extracelulares , Bactérias , Cromatografia em Gel , Vesículas Extracelulares/metabolismo , Humanos , Luciferases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA