Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38473794

RESUMO

MicroRNAs (miRs) act as important post-transcriptional regulators of gene expression in glial cells and have been shown to be involved in the pathogenesis of neurodegenerative diseases, including Alzheimer's disease (AD). Here, we investigated the effects of agathisflavone, a biflavonoid purified from the leaves of Cenostigma pyramidale (Tul.), on modulating the expression of miRs and inflammatory mediators in activated microglia. C20 human microglia were exposed to oligomers of the ß-amyloid peptide (Aß, 500 nM) for 4 h or to lipopolysaccharide (LPS, 1 µg/mL) for 24 h and then treated or not with agathisflavone (1 µM) for 24 h. We observed that ß-amyloid and LPS activated microglia to an inflammatory state, with increased expression of miR-146a, miR-155, IL1-ß, IL-6, and NOS2. Treatment with agathisflavone resulted in a significant reduction in miR146a and miR-155 induced by LPS or Aß, as well as inflammatory cytokines IL1-ß, IL-6, and NOS2. In cells stimulated with Aß, there was an increase in p-STAT3 expression that was reduced by agathisflavone treatment. These data identify a role for miRs in the anti-inflammatory effect of agathisflavone on microglia in models of neuroinflammation and AD.


Assuntos
Doença de Alzheimer , Biflavonoides , MicroRNAs , Humanos , Biflavonoides/farmacologia , Microglia/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Citocinas/metabolismo , MicroRNAs/genética , Fator de Transcrição STAT3/metabolismo
2.
Pharmaceutics ; 15(5)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37242652

RESUMO

Agathisflavone, purified from Cenostigma pyramidale (Tul.) has been shown to be neuroprotective in in vitro models of glutamate-induced excitotoxicity and inflammatory damage. However, the potential role of microglial regulation by agathisflavone in these neuroprotective effects is unclear. Here we investigated the effects of agathisflavone in microglia submitted to inflammatory stimulus in view of elucidating mechanisms of neuroprotection. Microglia isolated from cortices of newborn Wistar rats were exposed to Escherichia coli lipopolysaccharide (LPS, 1 µg/mL) and treated or not with agathisflavone (1 µM). Neuronal PC12 cells were exposed to a conditioned medium from microglia (MCM) treated or not with agathisflavone. We observed that LPS induced microglia to assume an activated inflammatory state (increased CD68, more rounded/amoeboid phenotype). However, most microglia exposed to LPS and agathisflavone, presented an anti-inflammatory profile (increased CD206 and branched-phenotype), associated with the reduction in NO, GSH mRNA for NRLP3 inflammasome, IL1-ß, IL-6, IL-18, TNF, CCL5, and CCL2. Molecular docking also showed that agathisflavone bound at the NLRP3 NACTH inhibitory domain. Moreover, in PC12 cell cultures exposed to the MCM previously treated with the flavonoid most cells preserved neurites and increased expression of ß-tubulin III. Thus, these data reinforce the anti-inflammatory activity and the neuroprotective effect of agathisflavone, effects associated with the control of NLRP3 inflammasome, standing out it as a promising molecule for the treatment or prevention of neurodegenerative diseases.

3.
Neurotox Res ; 41(3): 224-241, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36723781

RESUMO

Causes of dopaminergic neuronal loss in Parkinson's disease (PD) are subject of investigation and the common use of models of acute neurodegeneration induced by neurotoxins 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 6-hydroxydopamine, and rotenone contributed to advances in the study of PD. However, the use of study models more similar to the pathophysiology of PD is required for advances in early diagnosis and translational pharmacology. Aminochrome (AMI), a compound derived from dopamine oxidation and a precursor of neuromelanin, is able to induce all the mechanisms associated with neurodegeneration. Previously, we showed AMI is cytotoxic in primary culture of mesencephalic cells (PCMC) and induces in vitro and in vivo neuroinflammation. On the other hand, the effect of rutin in central nervous system cells has revealed anti-inflammatory, antioxidative, and neuroprotective potential. However, there have been no data studies on the effect of rutin against aminochrome neurotoxicity. Here, we show that rutin prevents lysosomal dysfunction and aminochrome-induced cell death in SHSY-5Y cells, protects PCMC against aminochrome cytotoxicity, and prevents in vivo loss of dopaminergic neurons in substantia nigra pars compacta (SNPc), as well as microgliosis and astrogliosis. Additionally, we show that rutin decreases levels of interleukin-1ß (IL-1ß) mRNA and increases levels of glia-derived neurotrophic factor (GDNF) and nerve-derived neurotrophic factor (NGF) mRNA. We evidence for the first time the protective effect of rutin on PD aminochrome-induced models and suggest the potential role of the anti-inflammatory activity and upregulation of NGF and GDNF in the mechanism of rutin action against aminochrome neurotoxicity.


Assuntos
Fármacos Neuroprotetores , Síndromes Neurotóxicas , Doença de Parkinson , Animais , Camundongos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Flavonoides/farmacologia , Rutina/farmacologia , Síndromes Neurotóxicas/tratamento farmacológico , Síndromes Neurotóxicas/prevenção & controle , Síndromes Neurotóxicas/metabolismo , Dopamina/metabolismo , Doença de Parkinson/metabolismo , Neurônios Dopaminérgicos , Anti-Inflamatórios/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia
4.
Neurotox Res ; 40(6): 2135-2147, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35997936

RESUMO

Studies showed that JM-20, a benzodiazepine-dihydropyridine hybrid molecule, protects against rotenone and 6-hydroxydopamine neurotoxicity. However, its protective effects against cytotoxicity induced by endogenous neurotoxins involved in Parkinson's disease (PD) pathogenesis have never been investigated. In this study, we evaluated the ability of JM-20 to inhibit alpha-synuclein (aSyn) aggregation. We also evaluated the interactions of JM-20 with aSyn by molecular docking and molecular dynamics and assessed the protective effect of JM-20 against aminochrome cytotoxicity. We demonstrated that JM-20 induced the formation of heterogeneous amyloid fibrils, which were innocuous to primary cultures of mesencephalic cells. Moreover, JM-20 reduced the average size of aSyn positive inclusions in H4 cells transfected with SynT wild-type and synphilin-1-V5, but not in HEK cells transfected with synphilin-1-GFP. In silico studies showed the interaction between JM-20 and the aSyn-binding site. Additionally, we showed that JM-20 protects SH-SY5Y cells against aminochrome cytotoxicity. These results reinforce the potential of JM-20 as a neuroprotective compound for PD and suggest aSyn as a molecular target for JM-20.


Assuntos
Di-Hidropiridinas , Neuroblastoma , Doença de Parkinson , Humanos , alfa-Sinucleína , Benzodiazepinas , Simulação de Acoplamento Molecular , Doença de Parkinson/tratamento farmacológico
5.
Molecules ; 26(22)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34834016

RESUMO

Quercetin (Q) is a bioflavonoid with biological potential; however, poor solubility in water, extensive enzymatic metabolism and a reduced bioavailability limit its biopharmacological use. The aim of this study was to perform structural modification in Q by acetylation, thus, obtaining the quercetin pentaacetate (Q5) analogue, in order to investigate the biological potentials (antioxidant, antileishmania, anti-inflammatory and cytotoxicity activities) in cell cultures. Q5 was characterized by FTIR, 1H and 13C NMR spectra. The antioxidant potential was evaluated against the radical ABTS•+. The anti-inflammatory potential was evaluated by measuring the pro-inflammatory cytokine tumor necrosis factor (TNF) and the production of nitric oxide (NO) in peritoneal macrophages from BALB/c mice. Cytotoxicity tests were performed using the AlamarBlue method in cancer cells HepG2 (human hepatocarcinoma), HL-60 (promyelocytic leukemia) and MCR-5 (healthy human lung fibroblasts) as well as the MTT method for C6 cell cultures (rat glioma). Q and Q5 showed antioxidant activity of 29% and 18%, respectively, which is justified by the replacement of hydroxyls by acetyl groups. Q and Q5 showed concentration-dependent reductions in NO and TNF production (p < 0.05); Q and Q5 showed higher activity at concentrations > 40µM when compared to dexamethasone (20 µM). For the HL-60 lineage, Q5 demonstrated selectivity, inducing death in cancer cells, when compared to the healthy cell line MRC-5 (IC50 > 80 µM). Finally, the cytotoxic superiority of Q5 was verified (IC50 = 11 µM), which, at 50 µM for 24 h, induced changes in the morphology of C6 glioma cells characterized by a round body shape (not yet reported in the literature). The analogue Q5 had potential biological effects and may be promising for further investigations against other cell cultures, particularly neural ones.


Assuntos
Anti-Inflamatórios , Antineoplásicos , Antioxidantes , Antiprotozoários , Quercetina/análogos & derivados , Acetilação , Animais , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Antioxidantes/síntese química , Antioxidantes/química , Antioxidantes/farmacologia , Antiprotozoários/síntese química , Antiprotozoários/química , Antiprotozoários/farmacologia , Células HL-60 , Células Hep G2 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Quercetina/síntese química , Quercetina/química , Quercetina/farmacologia
6.
Molecules ; 25(15)2020 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-32726999

RESUMO

Amburana cearensis A.C. Smith is an endemic tree from Northeastern Brazil used in folk medicine as teas, decocts and syrups for the treatment of various respiratory and inflammatory diseases, since therapeutic properties have been attributed to compounds from its stem bark and seeds. Numerous pharmacological properties of semi-purified extracts and isolated compounds from A. cearensis have been described in several biological systems, ranging from antimicrobial to anti-inflammatory effects. Some of these activities are attributed to coumarins and phenolic compounds, the major compounds present in A. cearensis seed extracts. Multiple lines of research demonstrate these compounds reduce oxidative stress, inflammation and neuronal death induced by glutamate excitotoxicity, events central to most neuropathologies, including Alzheimer's disease (AD) and Parkinson's Disease (PD). This review focuses on the botanical aspects, folk medicine use, biological effects and pharmacological activities of A. cearensis compounds and their potential as novel non-toxic drugs for the treatment of neurodegenerative diseases.


Assuntos
Fabaceae/química , Doenças Neurodegenerativas/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/farmacologia , Animais , Humanos , Fármacos Neuroprotetores/isolamento & purificação , Extratos Vegetais/isolamento & purificação
7.
Neurotox Res ; 38(3): 579-584, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32588357

RESUMO

Flavonoids have been suggested to protect dopaminergic neurons in Parkinson's disease based on studies that used exogenous neurotoxins. In this study, we tested the protective ability of agathisflavone in SH-SY5Y cells exposed to the endogenous neurotoxin aminochrome. The ability of aminochrome to induce loss of lysosome acidity is an important mechanism of its neurotoxicity. We demonstrated that the flavonoid inhibited cellular death and lysosomal dysfunction induced by aminochrome. In addition, we demonstrated that the protective effect of agathisflavone was suppressed by antagonists of estrogen receptors (ERα and ERß). These results suggest lysosomal protection and estrogen signaling as mechanisms involved in agathisflavone neuroprotection in a Parkinson's disease study model.


Assuntos
Biflavonoides/farmacologia , Morte Celular/efeitos dos fármacos , Neurônios Dopaminérgicos/efeitos dos fármacos , Síndromes Neurotóxicas/tratamento farmacológico , Humanos , Neuroproteção/efeitos dos fármacos , Neurotoxinas/farmacologia , Doença de Parkinson/tratamento farmacológico
8.
J Parasitol ; 105(2): 313-320, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30995165

RESUMO

Neospora caninum is a parasite that infects many animal species and has tropism for various tissues, particularly the nervous system, where it generally remains in cysts. Under N. caninum infection, glial cells activate immune responses by a Th2 profile, suggesting an immunologically privileged environment that controls parasite proliferation, with neuronal preservation. In this study, we investigated the role of soluble neurotrophic factors released by glial cells on neuronal integrity during N. caninum infection in vitro. Primary cultures of rat glial cells enriched in astrocytes were infected with N. caninum tachyzoites (1:1) for 24 hr. Neuron-glia co-cultures were cultured for 24 hr with conditioned medium from glial cells infected with N. caninum (CMNc) and from uninfected cultures (control). Cell viability was determined through a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test; astrocyte morphology and reactivity were determined through immunocytochemistry for glial fibrillar acid protein (GFAP) and the integrity of neurons through immunocytochemistry for ß-tubulin III. Expression of inflammatory cytokines and neurotrophic factors was determined through RT-qPCR. The MTT test demonstrated that 1:1 was the best parasite/host cell ratio, considering that it was enough to increase metabolism of glial cells when compared with control cultures and was not cytotoxic after 48 hr infection. N. caninum-infected glial cultures responded with astrogliosis characterized by an increase in GFAP expression and increase in IL-10 (2-fold), BDNF (1.6-fold), and NGF (1.7-fold) gene expression. In the neuron/glia co-cultures, it was observed that treatment with CMNc induced neuritis outgrowth without toxicity. Together, these results show that modulatory mechanisms by neurotrophic factors derived from glial cells, primarily astrocytes during the N. caninum infection, can favor neuroprotection.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Neospora/fisiologia , Fator de Crescimento Neural/metabolismo , Neuroglia/parasitologia , Análise de Variância , Animais , Animais Recém-Nascidos , Células Cultivadas , Córtex Cerebral/citologia , Chlorocebus aethiops , Técnicas de Cocultura , Meios de Cultivo Condicionados , DNA Complementar/biossíntese , Neospora/genética , Fatores de Crescimento Neural/metabolismo , Neuroglia/citologia , Neuroglia/metabolismo , Neurônios/citologia , Neurotrofina 3/metabolismo , RNA de Protozoário/genética , RNA de Protozoário/isolamento & purificação , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real , Células Vero
9.
Bioorg Chem ; 86: 665-673, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30826627

RESUMO

The new alkene lactone, (3E)-5,6-dihydro-5-(hydroxymethyl)-3-docdecylidenefuran-3(4H)-one (1), named majoranolide B, and three alkene lactones known as majorenolide (2), majoranolide (3) and majorynolide (4) were obtained from the aerial parts of Persea fulva (Lauraceae). The structures were elucidated in light of extensive spectroscopic analysis, including 1D, 2D NMR (1H, 13C, 1H-1H-COSY, HMBC and HSQC) and HR-ESI-MS. These compounds were screened for their in vitro antiproliferative activity in rat C6 glioma and astrocyte cells using MTT assay and in silico by molecular docking against targets that play a central role in controlling glioma cell cycle progression. Majoranolide (3) is the most active compound with IC50 6.69 µM against C6 glioma cells, followed by the compounds 1 (IC50 9.06 µM), 2 (IC50 12.04 µM) and 4 (IC50 41.90 µM). The alkene lactones 1-3 exhibited lower toxicity in non-tumor cells when compared to glioma cells. Molecular docking results showed that majoranolide establishes hydrogen bonds with all targets through its α,ß-unsaturated-γ-lactone moiety, whereas the long-chain alkyl group binds by means of several hydrophobic bonds. In the present study, it can be concluded from the anti-proliferative activity of isolates against C6 glioma cells that lactone constituents from P. fulva could have a great potential for the control of C6 glioma cells.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Lactonas/farmacologia , Lauraceae/química , Simulação de Acoplamento Molecular , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Lactonas/química , Lactonas/isolamento & purificação , Estrutura Molecular , Folhas de Planta/química , Ratos , Relação Estrutura-Atividade , Células Tumorais Cultivadas
10.
Neurotoxicology ; 65: 85-97, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29425760

RESUMO

Flavonoids are bioactive compounds that are known to be neuroprotective against glutamate-mediated excitotoxicity, one of the major causes of neurodegeneration. The mechanisms underlying these effects are unresolved, but recent evidence indicates flavonoids may modulate estrogen signaling, which can delay the onset and ameliorate the severity of neurodegenerative disorders. Furthermore, the roles played by glial cells in the neuroprotective effects of flavonoids are poorly understood. The aim of this study was to investigate the effects of the flavonoid agathisflavone (FAB) in primary neuron-glial co-cultures from postnatal rat cerebral cortex. Compared to controls, treatment with FAB significantly increased the number of neuronal progenitors and mature neurons, without increasing astrocytes or microglia. These pro-neuronal effects of FAB were suppressed by antagonists of estrogen receptors (ERα and ERß). In addition, treatment with FAB significantly reduced cell death induced by glutamate and this was associated with reduced expression levels of pro-inflammatory (M1) microglial cytokines, including TNFα, IL1ß and IL6, which are associated with neurotoxicity, and increased expression of IL10 and Arginase 1, which are associated with anti-inflammatory (M2) neuroprotective microglia. We also observed that FAB increased neuroprotective trophic factors, such as BDNF, NGF, NT4 and GDNF. The neuroprotective effects of FAB were also associated with increased expression of glutamate regulatory proteins in astrocytes, namely glutamine synthetase (GS) and Excitatory Amino Acid Transporter 1 (EAAT1). These findings indicate that FAB acting via estrogen signaling stimulates production of neurons in vitro and enhances the neuroprotective properties of microglia and astrocytes to significantly ameliorate glutamate-mediated neurotoxicity.


Assuntos
Biflavonoides/farmacologia , Fabaceae , Ácido Glutâmico/efeitos adversos , Degeneração Neural/prevenção & controle , Neurogênese/efeitos dos fármacos , Animais , Astrócitos/efeitos dos fármacos , Biflavonoides/antagonistas & inibidores , Morte Celular/efeitos dos fármacos , Córtex Cerebral , Técnicas de Cocultura , Citocinas/metabolismo , Transportador 1 de Aminoácido Excitatório/metabolismo , Fabaceae/química , Glutamato-Amônia Ligase/metabolismo , Microglia/efeitos dos fármacos , Microglia/metabolismo , Degeneração Neural/induzido quimicamente , Fatores de Crescimento Neural/metabolismo , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Piperidinas/farmacologia , Cultura Primária de Células , Pirazóis/farmacologia , Pirimidinas/farmacologia , Ratos
11.
Neurotox Res ; 30(1): 41-52, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26951456

RESUMO

Neurodegenerative disorders have a common characteristic that is the involvement of different cell types, typically the reactivity of astrocytes and microglia, characterizing gliosis, which in turn contributes to the neuronal dysfunction and or death. Flavonoids are secondary metabolites of plant origin widely investigated at present and represent one of the most important and diversified among natural products phenolic groups. Several biological activities are attributed to this class of polyphenols, such as antitumor activity, antioxidant, antiviral, and anti-inflammatory, among others, which give significant pharmacological importance. Our group have observed that flavonoids derived from Brazilian plants Dimorphandra mollis Bent., Croton betulaster Müll. Arg., e Poincianella pyramidalis Tul., botanical synonymous Caesalpinia pyramidalis Tul. also elicit a broad spectrum of responses in astrocytes and neurons in culture as activation of astrocytes and microglia, astrocyte associated protection of neuronal progenitor cells, neuronal differentiation and neuritogenesis. It was observed the flavonoids also induced neuronal differentiation of mouse embryonic stem cells and human pluripotent stem cells. Moreover, with the objective of seeking preclinical pharmacological evidence of these molecules, in order to assess its future use in the treatment of neurodegenerative disorders, we have evaluated the effects of flavonoids in preclinical in vitro models of neuroinflammation associated with Parkinson's disease and glutamate toxicity associated with ischemia. In particular, our efforts have been directed to identify mechanisms involved in the changes in viability, morphology, and glial cell function induced by flavonoids in cultures of glial cells and neuronal cells alone or in interactions and clarify the relation with their neuroprotective and morphogetic effects.


Assuntos
Flavonoides/farmacologia , Flavonoides/uso terapêutico , Doenças Neurodegenerativas/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Plantas/química , Animais , Células Cultivadas , Humanos , Microglia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA