Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Issues Mol Biol ; 45(5): 3965-3976, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37232722

RESUMO

In recent decades, clinical and experimental studies have revealed that estradiol contributes enormously to glycemic homeostasis. However, the same consensus does not exist in women during menopause who undergo replacement with progesterone or conjugated estradiol and progesterone. Since most hormone replacement treatments in menopausal women are performed with estradiol (E2) and progesterone (P4) combined, this work aimed to investigate the effects of progesterone on energy metabolism and insulin resistance in an experimental model of menopause (ovariectomized female mice-OVX mice) fed a high-fat diet (HFD). OVX mice were treated with E2 or P4 (or both combined). OVX mice treated with E2 alone or combined with P4 displayed reduced body weight after six weeks of HFD feeding compared to OVX mice and OVX mice treated with P4 alone. These data were associated with improved glucose tolerance and insulin sensitivity in OVX mice treated with E2 (alone or combined with P4) compared to OVX and P4-treated mice. Additionally, E2 treatment (alone or combined with P4) reduced both hepatic and muscle triglyceride content compared with OVX control mice and OVX + P4 mice. There were no differences between groups regarding hepatic enzymes in plasma and inflammatory markers. Therefore, our results revealed that progesterone replacement alone does not seem to influence glucose homeostasis and ectopic lipid accumulation in OVX mice. These results will help expand knowledge about hormone replacement in postmenopausal women associated with metabolic syndrome and non-alcoholic fatty liver disease.

2.
Int J Biol Macromol ; 226: 1021-1030, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36436608

RESUMO

Calcium carbonate (CaCO3) is used as a filler to improve the stiffness and processability of plastics at low cost. However, its high density limits the quantity to be used. In this work, the feasibility of using starch consolidation of eggshells-derived CaCO3 (ES) to develop lightweight fillers for low density polyethylene (LDPE)-based materials was studied. Starch, recovered from potato by-products, was combined with ES, gelatinized, dried, and milled as a fine powder. The obtained ES/starch-based particles were then compounded with LDPE and their influence on chromatic, mechanical, morphological, and density properties of mold injected LDPE-based materials was studied. Commercially available CaCO3 (COM) was used as control. ES/starch particles were 18 times less dense than the commercially available CaCO3 (2.62 g cm-3). When incorporated into LDPE-based formulations, ES/starch originated brownish materials with lower density (1.18 g cm-3) and higher stiffness (542 MPa of Young's modulus) than those produced with the COM sample (1.33 g cm-3 of density; 221 MPa of Young's modulus). Therefore, starch consolidation of ES revealed to be a promising approach to develop lightweight fillers able to provide stiffness and color to LDPE-based plastics, while valorizing biomolecules-rich by-products.


Assuntos
Plásticos , Polietileno , Carbonato de Cálcio , Módulo de Elasticidade , Amido
3.
Nanomaterials (Basel) ; 10(10)2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33096705

RESUMO

This review aims to showcase the current use of graphene derivatives, graphene-based nanomaterials in particular, in biopolymer-based composites for food packaging applications. A brief introduction regarding the valuable attributes of available and emergent bioplastic materials is made so that their contributions to the packaging field can be understood. Furthermore, their drawbacks are also disclosed to highlight the benefits that graphene derivatives can bring to bio-based formulations, from physicochemical to mechanical, barrier, and functional properties as antioxidant activity or electrical conductivity. The reported improvements in biopolymer-based composites carried out by graphene derivatives in the last three years are discussed, pointing to their potential for innovative food packaging applications such as electrically conductive food packaging.

4.
J Mech Behav Biomed Mater ; 112: 104072, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32911228

RESUMO

This study aimed to synthesize and characterize non-woven acrylonitrile butadiene styrene (ABS), polyamide-6 (P6), and polystyrene (PS) nanofibers, and evaluate their effects on the flexural strength and fracture resistance of fiber-modified polymethyl methacrylate (PMMA) resin. ABS, P6, and PS polymer solutions were prepared and electrospun into fiber mats, which were characterized by means of morphological, chemical, physical, and mechanical analyses. The fiber mats were then used to modify a thermally-activated PMMA resin, resulting in four testing groups: one unmodified group (control) and three fiber-modified groups incorporated with ABS, P6, or PS fiber mats. Flexural strength, work of fracture, and fractographic analysis were performed for all groups. Data were analyzed using Kruskal-Wallis or ANOVA tests (α = 0.05). The fiber diameter decreased, respectively, as follows: ABS > P6 > PS. Only the P6 fiber mats demonstrated a crystalline structure. Wettability was similar among the distinct fiber mats, although tensile strength was significantly greater for P6, followed by ABS, and then PS mats. Flexural strength of the fiber-modified PMMA resins was similar to the control, except for the weaker P6-based material. The work of fracture seemed to be greater and lower when the P6 and PS fibers were used, respectively. The fiber-modified groups exhibited a rougher pattern in the fractured surfaces when compared to the control, which may suggest that the presence of fibers deviates the direction of crack propagation, making the fracture mechanism of the PMMA resin more dynamic. While the neat PMMA showed a typical brittle response, the fiber-modified PMMA resins demonstrated a ductile response, combined with voids, suggesting large shear deformation during fracture. Altogether, despite the lack of direct reinforcement in the mechanical strength of the PMMA resin, the use of electrospun fibers showed promising application for the improvement of fracture behavior of PMMA resins, turning them into more compliant materials, although this effect may depend on the fiber composition.


Assuntos
Nanofibras , Polimetil Metacrilato , Resinas Acrílicas , Bases de Dentadura , Resistência à Flexão , Teste de Materiais , Maleabilidade , Polímeros , Estresse Mecânico , Propriedades de Superfície
5.
Future Med Chem ; 11(12): 1417-1425, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31298580

RESUMO

Aim: The orphan drug auranofin was recently found to exhibit antimicrobial properties. Materials & methods: We explored the efficacy of auranofin by evaluating the minimal inhibitory concentration against a collection of over 500 clinical isolates derived from multiple institutions, inclusive of drug resistant strains. Our evaluation also included continuous exposure of bacteria to auranofin. Results & conclusion: We found that minimal inhibitory concentrations ranged between 0.125 and 1 mg/l, exerting robust antimicrobial activity against a sizeable clinical collection of the bacteria. Further, we evaluated the propensity of the methicillin-resistant Staphylococcus aureus strain MW2 to develop resistance through extended exposure to auranofin. After 25 days, the bacteria remained susceptible. Our data suggest that resistance mechanisms do not currently exist to block auranofin antimicrobial activity.


Assuntos
Antibacterianos/farmacologia , Auranofina/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Testes de Sensibilidade Microbiana , Staphylococcus aureus/isolamento & purificação
6.
Virulence ; 6(1): 29-39, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25654408

RESUMO

Probiotic strains of Lactobacillus have been studied for their inhibitory effects on Candida albicans. However, few studies have investigated the effect of these strains on biofilm formation, filamentation and C. albicans infection. The objective of this study was to evaluate the influence of Lactobacillus acidophilus ATCC 4356 on C. albicans ATCC 18804 using in vitro and in vivo models. In vitro analysis evaluated the effects of L. acidophilus on the biofilm formation and on the capacity of C. albicans filamentation. For in vivo study, Galleria mellonella was used as an infection model to evaluate the effects of L. acidophilus on candidiasis by survival analysis, quantification of C. albicans CFU/mL, and histological analysis. The direct effects of L. acidophilus cells on C. albicans, as well as the indirect effects using only a Lactobacillus culture filtrate, were evaluated in both tests. The in vitro results showed that both L. acidophilus cells and filtrate were able to inhibit C. albicans biofilm formation and filamentation. In the in vivo study, injection of L. acidophilus into G. mellonella larvae infected with C. albicans increased the survival of these animals. Furthermore, the number of C. albicans CFU/mL recovered from the larval hemolymph was lower in the group inoculated with L. acidophilus compared to the control group. In conclusion, L. acidophilus ATCC 4356 inhibited in vitro biofilm formation by C. albicans and protected G. mellonella against experimental candidiasis in vivo.


Assuntos
Biofilmes/crescimento & desenvolvimento , Candida albicans/crescimento & desenvolvimento , Lactobacillus acidophilus/crescimento & desenvolvimento , Mariposas/microbiologia , Probióticos/farmacologia , Animais , Candidíase/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...