Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEBS Lett ; 598(4): 415-436, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38320753

RESUMO

Matrin-3 (MATR3) is an RNA-binding protein implicated in neurodegenerative and neurodevelopmental diseases. However, little is known regarding the role of MATR3 in cryptic splicing within the context of functional genes and how disease-associated variants impact this function. We show that loss of MATR3 leads to cryptic exon inclusion in many transcripts. We reveal that ALS-linked S85C pathogenic variant reduces MATR3 solubility but does not impair RNA binding. In parallel, we report a novel neurodevelopmental disease-associated M548T variant, located in the RRM2 domain, which reduces protein solubility and impairs RNA binding and cryptic splicing repression functions of MATR3. Altogether, our research identifies cryptic events within functional genes and demonstrates how disease-associated variants impact MATR3 cryptic splicing repression function.


Assuntos
Esclerose Lateral Amiotrófica , Humanos , Esclerose Lateral Amiotrófica/genética , Éxons/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , RNA , Proteínas Associadas à Matriz Nuclear/genética
2.
Biology (Basel) ; 12(10)2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37887017

RESUMO

Microglial and astrocytic reactivity is a prominent feature of amyotrophic lateral sclerosis (ALS). Microglia and astrocytes have been increasingly appreciated to play pivotal roles in disease pathogenesis. These cells can adopt distinct states characterized by a specific molecular profile or function depending on the different contexts of development, health, aging, and disease. Accumulating evidence from ALS rodent and cell models has demonstrated neuroprotective and neurotoxic functions from microglia and astrocytes. In this review, we focused on the recent advancements of knowledge in microglial and astrocytic states and nomenclature, the landmark discoveries demonstrating a clear contribution of microglia and astrocytes to ALS pathogenesis, and novel therapeutic candidates leveraging these cells that are currently undergoing clinical trials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...