Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
World J Microbiol Biotechnol ; 39(2): 60, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36574179

RESUMO

Fusarium kalimantanense is a genetic lineage of Fusarium oxysporum f. sp. cubense (Foc) and belongs to the Fusarium oxysporum species complex (FOSC). This pathogen is a causative agent of Panama disease, an infection that has caused damage to the banana crop worldwide. Bacillus sp. (LPPC170) showed preliminary antagonist activity against F. kalimantanense (LPPC130) in vitro tests from the cultivation of axenic culture and co-culture with inhibition of mycelial growth of phytopathogen of 41.23%. According to these findings, volatile organic compounds (VOCs) emitted from Bacillus sp. were obtained by solid-phase microextraction and identified by gas chromatography coupled with a mass spectrometer (GC-MS). The multivariate data analysis tool (PLS-DA and Heatmap) identified short-chain organic acids as the main antagonistic VOCs responsible for inhibiting the mycelial growth of LPPC130. Acetic acid, propanoic acid, butanoic acid, valeric acid, and isovaleric acid exhibited a strong inhibitory effect on the mycelial growth of LPPC130, with inhibition of 20.68%, 33.30%, 26.87%, 43.71%, and 53.10%, respectively. Scanning electron microscopy revealed that VOCs caused damage to the vegetative and reproductive structures of the fungus. These results suggest Bacillus LPPC170 as an excellent biocontrol tool against the phytopathogen causative agents of Panama disease.


Assuntos
Bacillus , Fusarium , Musa , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/farmacologia , Fungos , Musa/microbiologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
2.
Plant Physiol Biochem ; 190: 184-192, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36126463

RESUMO

The use of growth-promoting microorganisms with biostimulant characteristics is an important biological asset for the acclimatization of micropropagated seedlings. The present study aimed to evaluate the efficacy of the application of Trichoderma spp. on the promotion of the growth of micropropagated banana seedlings during acclimatization. The experiment was performed in an 8 × 6 completely randomized design using the following treatments: water, seedlings fertilized with controlled-release fertilizer, commercial biological inputs (A: T. asperellum, B/C: T. harzianum), and LPPC299 and LPPC300 strains. Plant height, pseudostem diameter, number of leaves, total leaf area, root length, fresh and dry mass of the plant, and accumulation of sodium, macronutrients, and micronutrients were evaluated 60 days after inoculation. Strains LPPC299 and LPPC300 were subjected to molecular identification by DNA sequencing of the ITS/5.8S locus. In vitro detection of growth promotion-related mechanisms and mycelial growth of biostimulants were performed using scanning electron microscopy. LPPC299 and LPPC300 had a greater similarity to T. longibrachiatum. LPPC299 was able to promote greater pseudostem diameter, number of leaves, and total leaf area in banana seedlings. T. asperellum (A) favored seedling performance in terms of fresh and dry mass of the plants. The strains were able to produce siderophores, indoleacetic acid, and catalase in vitro. Seedlings inoculated with the strains accumulated Mn, S (LPPC300), and Mg (LPPC299). LPPC299 from the banana rhizosphere was efficient in promoting performance in banana seedlings, showing its potential as a biostimulant for this crop.


Assuntos
Musa , Trichoderma , Aclimatação , Catalase , Preparações de Ação Retardada , Fertilizantes , Hypocreales , Micronutrientes , Raízes de Plantas , Plântula , Sideróforos , Sódio , Água
3.
PLoS One ; 14(11): e0223800, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31682614

RESUMO

Periodontitis is an immuno-inflammatory disease, which can lead to tooth loss. This study aimed to investigate the efficacy of Platymiscium floribundum Vog., a Brazilian tree which has been used in folk medicine as an anti-inflammatory agent, in a pre-clinical trial of periodontitis in rats. Periodontitis was induced by placing a sterilized nylon (3.0) thread ligature around the cervix of the second left upper molar of the rats, which received (per os) P. floribundum extract (0.1, 1 or 10 mg/kg) or vehicle 1h before periodontitis-challenge and once daily during 11 days. Treatment with P. floribundum (10mg/kg) decreased alveolar bone loss, MPO activity nitrite/nitrate levels, oxidative stress, TNF-α, IL1-ß, IL-8/CINC-1, and PGE2 gingival levels, and transcription of TNF-α, IL1-ß, COX-2, iNOS, RANK, and RANKL genes, while elevated both BALP serum levels and IL-10 gingival levels. The animals did not show signs of toxicity throughout the experimental course. These findings show that P. floribundum has anti-inflammatory and anti-resorptive properties in a pre-clinical trial of periodontitis, representing an interesting biotechnological tool.


Assuntos
Anti-Inflamatórios/farmacologia , Inflamação/tratamento farmacológico , Periodontite/tratamento farmacológico , Extratos Vegetais/farmacologia , Substâncias Protetoras/farmacologia , Árvores/química , Animais , Feminino , Gengiva/efeitos dos fármacos , Gengiva/metabolismo , Inflamação/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Periodontite/metabolismo , Folhas de Planta/química , Ratos , Ratos Wistar , Transcrição Gênica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...