Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(9)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37177203

RESUMO

Lignocellulosic biomasses are used in several applications, such as energy production, materials, and biofuels. These applications result in increased consumption and waste generation of these materials. However, alternative uses are being developed to solve the problem of waste generated in the industry. Thus, research is carried out to ensure the use of these biomasses as enzymatic support. These surveys can be accompanied using the advanced bibliometric analysis tool that can help determine the biomasses used and other perspectives on the subject. With this, the present work aims to carry out an advanced bibliometric analysis approaching the main studies related to the use of lignocellulosic biomass as an enzymatic support. This study will be carried out by highlighting the main countries/regions that carry out productions, research areas that involve the theme, and future trends in these areas. It was observed that there is a cooperation between China, USA, and India, where China holds 28.07% of publications in this area, being the country with the greatest impact in the area. Finally, it is possible to define that the use of these new supports is a trend in the field of biotechnology.

2.
Polymers (Basel) ; 14(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36365690

RESUMO

Cardanol, principal constituent of the technical cashew nut shell liquid, has applications as antioxidant and antibacterial, and these properties may be enhanced through encapsulation. In the present study, we isolated and purified cardanol, and nanoparticles (NPs) were produced by polyelectrolyte complexation using polysaccharide systems with chitosan, sodium alginate, and non-toxic Arabic gum, because they are biocompatible, biodegradable, and stable. We characterized the NPs for morphological, physicochemical, and antioxidant activity. The micrographs obtained revealed spherical and nanometric morphology, with 70% of the distribution ranging from 34 to 300 nm, presenting a bimodal distribution. The study of the spectra in the infrared region suggested the existence of physicochemical interactions and cross-links between the biopolymers involved in the encapsulated NPs. Furthermore, the NPs showed better antioxidant potential when compared to pure cardanol. Thus, the encapsulation of cardanol may be an effective method to maintain its properties, promote better protection of the active ingredient, minimize side effects, and can target its activities in specific locations, by inhibiting free radicals in various sectors such as pharmaceutical, nutraceutical, and biomedical.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA