Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nat Prod ; 87(4): 1217-1221, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38630559

RESUMO

Two unusual naphthoquinones, named here as pleonotoquinones A (1) and B (2), were isolated along with two known anthraquinones (3 and 4) via chromatographic separations of an ethyl acetate extract of the roots of Pleonotoma jasminifolia. Compounds 1 and 2 are the first examples of quinones bearing a 2-methyloxepine moiety. The compounds were isolated with the aid of mass spectrometry and molecular networking, and their structures were resolved using 1D and 2D NMR and HRESIMS data. The isolated compounds were evaluated for their antiproliferative activity against human cancer cell lines, and compounds 1 and 2 displayed cytotoxicity against human colon cancer HCT116 cells (IC50 = 2.6 µM for compound 1 and IC50 = 4.3 µM for compound 2) and human liver cancer HepG2 cells (IC50 = 1.9 µM for compound 1 and IC50 = 6.4 µM for compound 2).


Assuntos
Antineoplásicos Fitogênicos , Ensaios de Seleção de Medicamentos Antitumorais , Naftoquinonas , Raízes de Plantas , Humanos , Naftoquinonas/farmacologia , Naftoquinonas/química , Naftoquinonas/isolamento & purificação , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Estrutura Molecular , Raízes de Plantas/química , Células Hep G2 , Células HCT116 , Boraginaceae/química
2.
Cell Death Discov ; 9(1): 460, 2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38104089

RESUMO

[Ru(5-FU)(PPh3)2(bipy)]PF6 (Ru/5-FU) is a novel ruthenium complex with 5-fluorouracil with promising potential against colorectal cancer (CRC). In the present study, we investigated the molecular mechanism of Ru/5-FU action in HCT116 CRC cells. Ru/5-FU exhibited potent cytotoxicity on a panel of cancer cell lines and on primary cancer cells and induced apoptosis in HCT116 CRC cells. Ru/5-FU reduced AKT1 gene transcripts, as well as the expression of Akt1 and Akt (pS473) and downstream Akt proteins mTOR (pS2448), S6 (pS235/pS236), 4EBP1 (pT36/pT45), GSK-3ß (pS9) and NF-κB p65 (pS529), but not Akt upstream proteins Hsp90 and PI3K p85/p55 (pT458/pT199), indicating an inhibitory action of Akt/mTOR signaling. Ru/5-FU increased LC3B expression and reduced p62/SQSTM1 levels, indicating autophagy induction. Curiously, the autophagy inhibitors 3-methyladenine and chloroquine increased Ru/5-FU-induced cell death, indicating an induction of cytoprotective autophagy by this compound. Ru/5-FU also reduced clonogenic survival, as well as the percentage of CD133+ cells and colonosphere formation, indicating that Ru/5-FU can suppress stem cells in HCT116 cells. Ru/5-FU inhibited cell migration and invasion in wound healing assays and Transwell cell invasion assays, along with a reduction in vimentin expression and an increase in E-cadherin levels, indicating that Ru/5-FU can interfere with epithelial-mesenchymal transition. Ru/5-FU also inhibited in vivo HCT116 cell development and experimental lung metastases in mouse xenograft models. Altogether, these results indicate that Ru/5-FU is an anti-CRC chemotherapy drug candidate with the ability to suppress stemness in CRC cells by inhibiting Akt/mTOR signaling.

3.
Cell Death Dis ; 14(12): 832, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102125

RESUMO

In this work, we describe a novel ruthenium-xanthoxylin complex, [Ru(phen)2(xant)](PF6) (RXC), that can eliminate colorectal cancer (CRC) stem cells by targeting the chaperone Hsp90. RXC exhibits potent cytotoxicity in cancer cell lines and primary cancer cells, causing apoptosis in HCT116 CRC cells, as observed by cell morphology, YO-PRO-1/PI staining, internucleosomal DNA fragmentation, mitochondrial depolarization, and PARP cleavage (Asp214). Additionally, RXC can downregulate the HSP90AA1 and HSP90B1 genes and the expression of HSP90 protein, as well as the expression levels of its downstream/client elements Akt1, Akt (pS473), mTOR (pS2448), 4EBP1 (pT36/pT45), GSK-3ß (pS9), and NF-κB p65 (pS529), implying that these molecular chaperones can be molecular targets for RXC. Moreover, this compound inhibited clonogenic survival, the percentage of the CRC stem cell subpopulation, and colonosphere formation, indicating that RXC can eliminate CRC stem cells. RXC reduced cell migration and invasion, decreased vimentin and increased E-cadherin expression, and induced an autophagic process that appeared to be cytoprotective, as autophagy inhibitors enhanced RXC-induced cell death. In vivo studies showed that RXC inhibits tumor progression and experimental metastasis in mice with CRC HCT116 cell xenografts. Taken together, these results highlight the potential of the ruthenium complex RXC in CRC therapy with the ability to eliminate CRC stem cells by targeting the chaperone Hsp90.


Assuntos
Neoplasias Colorretais , Rutênio , Humanos , Animais , Camundongos , Transdução de Sinais , Glicogênio Sintase Quinase 3 beta/metabolismo , Células HCT116 , Proteínas de Choque Térmico HSP90/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Proliferação de Células , Linhagem Celular Tumoral
4.
Fitoterapia ; 171: 105686, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37748714

RESUMO

The chemical composition of V. pyrantha resin (VpR) and fractions (VpFr1-7 and VpWS) were assessed by LC-MS and NMR. Twenty-eight metabolites were identified, including 16 diterpenoids, seven nor-diterpenoids, one fatty acid, one bis-diterpenoid, one steroid, one flavonoid, and one triterpenoid. The pharmacological potential of VpR, VpFr1-7, and isolated compounds was assessed by determining their antioxidant, antimicrobial, and cytotoxic activities. VpFr4 (IC50 = 205.48 ± 3.37 µg.mL-1) had the highest antioxidant activity, whereas VpFr6 (IC50 = 842.79 ± 10.23 µg.mL-1) had the lowest. The resin was only active against Staphylococcus aureus (MIC 62.5 µg.mL-1) and Salmonella choleraesius (MIC and MFC 500 µg.mL-1), but fractions were enriched with antibacterial compounds. V. pyrantha resin and fractions showed great cytotoxic activity against HCT116 (IC50 = 20.08 µg.mL-1), HepG2 (IC50 = 20.50 µg.mL-1), and B16-F10 (12.17 µg.mL-1) cell lines. Multivariate statistical analysis was used as a powerful tool to pinpoint possible metabolites responsible for the observed activities.


Assuntos
Anti-Infecciosos , Antineoplásicos , Diterpenos , Extratos Vegetais/química , Estrutura Molecular , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Antioxidantes/farmacologia , Antioxidantes/química , Diterpenos/farmacologia
5.
Molecules ; 27(17)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36080430

RESUMO

Duguetia pycnastera Sandwith (Annonaceae) is a tropical tree that can be found in the Guyanas, Bolivia, Venezuela, and Brazil. In Brazil, it is popularly known as "ata", "envira", "envira-preta", and "envira-surucucu". In the present work, we investigated the in vitro and in vivo HepG2 cell growth inhibition capacity of D. pycnastera leaf essential oil (EO). The chemical composition of the EO was determined by GC−MS and GC−FID analyses. The alamar blue assay was used to examine the in vitro cytotoxicity of EO in cancer cell lines and non-cancerous cells. In EO-treated HepG2 cells, DNA fragmentation was measured by flow cytometry. The in vivo antitumor activity of the EO was assessed in C.B-17 SCID mice xenografted with HepG2 cells treated with the EO at a dosage of 40 mg/kg. Chemical composition analysis displayed the sesquiterpenes α-gurjunene (26.83%), bicyclogermacrene (24.90%), germacrene D (15.35%), and spathulenol (12.97%) as the main EO constituents. The EO exhibited cytotoxicity, with IC50 values ranging from 3.28 to 39.39 µg/mL in the cancer cell lines SCC4 and CAL27, respectively. The cytotoxic activity of the EO in non-cancerous cells revealed IC50 values of 16.57, 21.28, and >50 µg/mL for MRC-5, PBMC, and BJ cells, respectively. An increase of the fragmented DNA content was observed in EO-treated HepG2 cells. In vivo, EO displayed tumor mass inhibition activity by 47.76%. These findings imply that D. pycnastera leaf EO may have anti-liver cancer properties.


Assuntos
Annonaceae , Antineoplásicos Fitogênicos , Óleos Voláteis , Animais , Annonaceae/química , Antineoplásicos Fitogênicos/química , Linhagem Celular Tumoral , Células Hep G2 , Humanos , Leucócitos Mononucleares , Camundongos , Camundongos SCID , Óleos Voláteis/química , Folhas de Planta/química
6.
Molecules ; 27(14)2022 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-35889279

RESUMO

Guatteria olivacea R. E. Fries (synonym Guatteria punctata (Aubl.) R.A. Howard) is a tree of 10-27 m tall popularly known as "envira-bobó", "envira-fofa", "envireira", "embira", "embira-branca", "embira-preta", envira-branca", and "envira-preta", which can be found in the Brazilian Amazon biome. In this study, we evaluated the cytotoxic and antitumor effects of the essential oil (EO) obtained from the leaves of G. olivacea against liver cancer using HepG2 cells as a model. EO was obtained using a hydrodistillation Clevenger-type apparatus and was qualitatively and quantitatively characterized using GC-MS and GC-FID, respectively. The alamar blue assay was used to assess the cytotoxic potential of EO in a panel of human cancer cell lines and human non-cancerous cells. In HepG2 cells treated with EO, YO-PRO-1/propidium iodide staining, cell cycle distribution, and reactive oxygen species (ROS) were examined. In C.B-17 SCID mice with HepG2 cell xenografts, the efficacy of the EO (20 and 40 mg/kg) was tested in vivo. GC-MS and GC-FID analyses showed germacrene D (17.65%), 1-epi-cubenol (13.21%), caryophyllene oxide (12.03%), spathulenol (11.26%), (E)-caryophyllene (7.26%), bicyclogermacrene (5.87%), and δ-elemene (4.95%) as the major constituents of G. olivacea leaf EO. In vitro cytotoxicity of EO was observed, including anti-liver cancer action with an IC50 value of 30.82 µg/mL for HepG2 cells. In HepG2 cells, EO treatment increased apoptotic cells and DNA fragmentation, without changes in ROS levels. Furthermore, the EO inhibited tumor mass in vivo by 32.8-57.9%. These findings suggest that G. olivacea leaf EO has anti-liver cancer potential.


Assuntos
Annonaceae , Guatteria , Neoplasias , Óleos Voláteis , Animais , Humanos , Camundongos , Camundongos SCID , Óleos Voláteis/farmacologia , Folhas de Planta , Espécies Reativas de Oxigênio
7.
Cancer Commun (Lond) ; 41(12): 1275-1313, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34791817

RESUMO

Colorectal cancer (CRC) represents the third most commonly diagnosed cancer and the second leading cause of cancer death worldwide. The modern concept of cancer biology indicates that cancer is formed of a small population of cells called cancer stem cells (CSCs), which present both pluripotency and self-renewal properties. These cells are considered responsible for the progression of the disease, recurrence and tumor resistance. Interestingly, some cell signaling pathways participate in CRC survival, proliferation, and self-renewal properties, and most of them are dysregulated in CSCs, including the Wingless (Wnt)/ß-catenin, Notch, Hedgehog, nuclear factor kappa B (NF-κB), Janus kinase/signal transducer and activator of transcription (JAK/STAT), peroxisome proliferator-activated receptor (PPAR), phosphatidyl-inositol-3-kinase/Akt/mechanistic target of rapamycin (PI3K/Akt/mTOR), and transforming growth factor-ß (TGF-ß)/Smad pathways. In this review, we summarize the strategies for eradicating CRC stem cells by modulating these dysregulated pathways, which will contribute to the study of potential therapeutic schemes, combining conventional drugs with CSC-targeting drugs, and allowing better cure rates in anti-CRC therapy.


Assuntos
Neoplasias Colorretais , Células-Tronco Neoplásicas , Transdução de Sinais/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Humanos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo
8.
Molecules ; 26(12)2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34207059

RESUMO

Diclinanona calycina R. E. Fries popularly known as "envira", is a species of the Annonaceae family endemic to Brazil. In our ongoing search for bioactive compounds from Annonaceae Amazon plants, the bark of D. calycina was investigated by classical chromatography techniques that yielded thirteen compounds (alkaloids and flavonoids) described for the first time in D. calycina as well as in the genus Diclinanona. The structure of these isolated compounds were established by extensive analysis using 1D/2D-NMR spectroscopy in combination with MS. The isolated alkaloids were identified as belonging to the subclasses: simple isoquinoline, thalifoline (1); aporphine, anonaine (2); oxoaporphine, liriodenine (3); benzyltetrahydroisoquinolines, (S)-(+)-reticuline (4); dehydro-oxonorreticuline (3,4-dihydro-7-hydroxy-6-methoxy-1-isoquinolinyl)(3-hydroxy-4-methoxyphenyl)-methanone) (5); (+)-1S,2R-reticuline Nß-oxide (6); and (+)-1S,2S-reticuline Nα-oxide (7); tetrahydroprotoberberine, coreximine (8); and pavine, bisnorargemonine (9). While the flavonoids belong to the benzylated dihydroflavones, isochamanetin (10), dichamanetin (11), and a mixture of uvarinol (12) and isouvarinol (13). Compound 5 is described for the first time in the literature as a natural product. The cytotoxic activity of the main isolated compounds was evaluated against cancer and non-cancerous cell lines. Among the tested compounds, the most promising results were found for the benzylated dihydroflavones dichamanetin (10), and the mixture of uvarinol (12) and isouvarinol (13), which presented moderate cytotoxic activity against the tested cancer cell lines (<20.0 µg·mL-1) and low cytotoxicity against the non-cancerous cell line MRC-5 (>25.0 µg·mL-1). Dichamanetin (11) showed cytotoxic activity against HL-60 and HCT116 with IC50 values of 15.78 µg·mL-1 (33.70 µmol·L-1) and 18.99 µg·mL-1 (40.56 µmol·L-1), respectively while the mixture of uvarinol (12) and isouvarinol (13) demonstrated cytotoxic activity against HL-60, with an IC50 value of 9.74 µg·mL-1, and HCT116, with an IC50 value of 17.31 µg·mL-1. These cytotoxic activities can be attributed to the presence of one or more hydroxybenzyl groups present in these molecules as well as the position in which these groups are linked. The cytotoxic activities of reticuline, anonaine and liriodenine have been previously established, with liriodenine being the most potent compound.


Assuntos
Alcaloides/química , Annonaceae/química , Flavonas/química , Isoquinolinas/química , Casca de Planta/química , Alcaloides/farmacologia , Aporfinas/química , Aporfinas/farmacologia , Brasil , Linhagem Celular Tumoral , Dioxóis/química , Dioxóis/farmacologia , Flavanonas/farmacologia , Flavonas/farmacologia , Células HCT116 , Células HL-60 , Células Hep G2 , Humanos , Isoquinolinas/farmacologia , Células MCF-7 , Extratos Vegetais , Folhas de Planta/química
9.
Cancers (Basel) ; 12(11)2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33233671

RESUMO

Autophagy is a physiological cellular process that is crucial for development and can occurs in response to nutrient deprivation or metabolic disorders. Interestingly, autophagy plays a dual role in cancer cells-while in some situations, it has a cytoprotective effect that causes chemotherapy resistance, in others, it has a cytotoxic effect in which some compounds induce autophagy-mediated cell death. In this review, we summarize strategies aimed at autophagy for the treatment of cancer, including studies of drugs that can modulate autophagy-mediated resistance, and/or drugs that cause autophagy-mediated cancer cell death. In addition, the role of autophagy in the biology of cancer stem cells has also been discussed.

10.
J Ethnopharmacol ; 262: 113166, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32730868

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Virola surinamensis (Rol. ex Rottb.) Warb. (Myristicaceae), popularly known in Brazil as "mucuíba", "ucuúba", "ucuúba-branca" or "ucuúba do igapó", is a medicinal plant used to treat a variety of diseases, including infections, inflammatory processes and cancer. AIM OF THE STUDY: In the present work, we investigated the chemical constituents and the in vitro and in vivo inhibition of human colon carcinoma HCT116 cells by essential oils obtained from the bark (EOB) and leaves (EOL) of V. surinamensis. MATERIALS AND METHODS: EOB and EOL were obtained by hydrodistillation and analyzed via gas chromatography with flame ionization detection and gas chromatography coupled to mass spectrometry. In vitro cytotoxic activity was determined in cultured cancer cells HCT116, HepG2, HL-60, B16-F10 and MCF-7 and in a non-cancerous cell line MRC-5 by the Alamar blue assay after 72 h of treatment. Annexin V/propidium iodide staining, mitochondrial transmembrane potential and cell cycle distribution were evaluated by flow cytometry in HCT116 cells treated with essential oils after 24 and 48 h of treatment. The cells were also stained with May-Grunwald-Giemsa to analyze cell morphology. In vivo antitumor activity was evaluated in C.B-17 SCID mice with HCT116 cells. RESULTS: The main constituents in EOB were aristolene (28.0 ± 3.1%), α-gurjunene (15.1 ± 2.4%), valencene (14.1 ± 1.9%), germacrene D (7.5 ± 0.9%), δ-guaiene (6.8 ± 1.0%) and ß-elemene (5.4 ± 0.6%). On the other hand, EOL displayed α-farnesene (14.5 ± 1.5%), ß-elemene (9.6 ± 2.3%), bicyclogermacrene (8.1 ± 2.0%), germacrene D (7.4 ± 0.7%) and α-cubebene (5.6 ± 1.1%) as main constituents. EOB showed IC50 values for cancer cells ranging from 9.41 to 29.52 µg/mL for HCT116 and B16-F10, while EOL showed IC50 values for cancer cells ranging from 7.07 to 26.70 µg/mL for HepG2 and HCT116, respectively. The IC50 value for a non-cancerous MRC-5 cell was 34.7 and 38.93 µg/mL for EOB and EOL, respectively. Both oils induced apoptotic-like cell death in HCT116 cells, as observed by the morphological characteristics of apoptosis, externalization of phosphatidylserine, mitochondrial depolarization and fragmentation of internucleosomal DNA. At a dose of 40 mg/kg, tumor mass inhibition rates were 57.9 and 44.8% in animals treated with EOB and EOL, respectively. CONCLUSIONS: These data indicate V. surinamensis as possible herbal medicine in the treatment of colon cancer.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Myristicaceae , Óleos Voláteis/farmacologia , Casca de Planta , Folhas de Planta , Animais , Antineoplásicos Fitogênicos/isolamento & purificação , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Feminino , Células HCT116 , Células HL-60 , Células Hep G2 , Humanos , Células MCF-7 , Melanoma Experimental , Camundongos , Camundongos SCID , Óleos Voláteis/isolamento & purificação , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
11.
Molecules ; 25(11)2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-32527068

RESUMO

Cyperus articulatus L. (Cyperaceae), popularly known in Brazil as "priprioca" or "piriprioca", is a tropical and subtropical plant used in popular medical practices to treat many diseases, including cancer. In this study, C. articulatus rhizome essential oil (EO), collected from the Brazilian Amazon rainforest, was addressed in relation to its chemical composition, induction of cell death in vitro and inhibition of tumor development in vivo, using human hepatocellular carcinoma HepG2 cells as a cell model. EO was obtained by hydrodistillation using a Clevenger-type apparatus and characterized qualitatively and quantitatively by gas chromatography coupled to mass spectrometry (GC-MS) and gas chromatography with flame ionization detection (GC-FID), respectively. The cytotoxic activity of EO was examined against five cancer cell lines (HepG2, HCT116, MCF-7, HL-60 and B16-F10) and one non-cancerous one (MRC-5) using the Alamar blue assay. Cell cycle distribution and cell death were investigated using flow cytometry in HepG2 cells treated with EO after 24, 48 and 72 h of incubation. The cells were also stained with May-Grunwald-Giemsa to analyze the morphological changes. The anti-liver-cancer activity of EO in vivo was evaluated in C.B-17 severe combined immunodeficient (SCID) mice with HepG2 cell xenografts. The main representative substances of this EO sample were muskatone (11.6%), cyclocolorenone (10.3%), α-pinene (8.26%), pogostol (6.36%), α-copaene (4.83%) and caryophyllene oxide (4.82%). EO showed IC50 values for cancer cell lines ranging from 28.5 µg/mL for HepG2 to >50 µg/mL for HCT116, and an IC50 value for non-cancerous of 46.0 µg/mL (MRC-5), showing selectivity indices below 2-fold for all cancer cells tested. HepG2 cells treated with EO showed cell cycle arrest at G2/M along with internucleosomal DNA fragmentation. The morphological alterations included cell shrinkage and chromatin condensation. Treatment with EO also increased the percentage of apoptotic-like cells. The in vivo tumor mass inhibition rates of EO were 46.5-50.0%. The results obtained indicate the anti-liver-cancer potential of C. articulatus rhizome EO.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Cyperus/química , Óleos Voláteis/farmacologia , Extratos Vegetais/farmacologia , Rizoma/química , Animais , Apoptose , Neoplasias da Mama/patologia , Movimento Celular , Proliferação de Células , Feminino , Humanos , Camundongos , Camundongos SCID , Folhas de Planta/química , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Biomed Pharmacother ; 129: 110402, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32574969

RESUMO

Conobea scoparioides (Cham. & Schltdl.) Benth. (syn. Sphaerotheca scoparioides Cham. & Schldtl.) (Plantaginaceae), popularly known as "pataqueira", "vassourinha-do-brejo" and/or "hierba-de-sapo", is a popular medicinal plant used to treat leishmaniasis, pain and beriberi. In addition, inhibition of cell adhesion, antioxidant, cytotoxic and leishmanicidal activities of compounds or fractions of C. scoparioides have been reported. In the present work, chemical constituents and in vitro and in vivo anti-liver cancer potential of essential oil (EO) from leaves of C. scoparioides were investigated using human hepatocellular carcinoma HepG2 cells as a cell model. EO was obtained by hydrodistillation using a Clevenger-type apparatus and characterized by GC-MS and GC-FID. The in vitro cytotoxic effect was evaluated on three human cancer cell lines (MCF-7, HepG2 and HCT116) and one human non-cancerous cell line (MRC-5) using the Alamar blue assay. Phosphatidylserine externalization and cell cycle distribution were quantified in HepG2 cells by flow cytometry after 48 h incubation. The effectiveness of EO in anti-liver cancer model was studied with HepG2 cells grafted on C.B. 17 SCID mice. The main constituents of EO were thymol methyl ether (62 %), thymol (16 %) and α-phellandrene (14 %). EO displayed an in vitro cytotoxic effect against all human cancer cell lines and caused externalization of phosphatidylserine and DNA fragmentation in HepG2 cells, suggesting induction of apoptotic-like cell death. In vivo tumor mass inhibition of 36.7 and 55.8 % was observed for treatment with EO at doses of 40 and 80 mg/kg, respectively. These results indicate in vitro and in vivo anti-liver cancer potential of EO from leaves of C. scoparioides.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Óleos Voláteis/farmacologia , Folhas de Planta , Óleos de Plantas/farmacologia , Plantaginaceae , Animais , Antineoplásicos Fitogênicos/isolamento & purificação , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Feminino , Células HCT116 , Células Hep G2 , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Células MCF-7 , Camundongos SCID , Óleos Voláteis/isolamento & purificação , Folhas de Planta/química , Óleos de Plantas/isolamento & purificação , Plantaginaceae/química , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Front Oncol ; 9: 582, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31334116

RESUMO

Ruthenium complexes with piplartine, [Ru(piplartine)(dppf)(bipy)](PF6)2 (1) and [Ru(piplartine)(dppb)(bipy)](PF6)2 (2) (dppf = 1,1-bis(diphenylphosphino) ferrocene; dppb = 1,4-bis(diphenylphosphino)butane and bipy = 2,2'-bipyridine), were recently synthesized and displayed more potent cytotoxicity than piplartine in different cancer cells, regulated RNA transcripts of several apoptosis-related genes, and induced reactive oxygen species (ROS)-mediated apoptosis in human colon carcinoma HCT116 cells. The present work aimed to explore the underlying mechanisms through which these ruthenium complexes induce cell death in HCT116 cells in vitro, as well as their in vivo action in a xenograft model. Both complexes significantly increased the percentage of apoptotic HCT116 cells, and co-treatment with inhibitors of JNK/SAPK, p38 MAPK, and MEK, which inhibits the activation of ERK1/2, significantly reduced the apoptosis rate induced by these complexes. Moreover, significant increase in phospho-JNK2 (T183/Y185), phospho-p38α (T180/Y182), and phospho-ERK1 (T202/Y204) expressions were observed in cells treated with these complexes, indicating MAPK-mediated apoptosis. In addition, co-treatment with a p53 inhibitor (cyclic pifithrin-α) and the ruthenium complexes significantly reduced the apoptosis rate in HCT116 cells, and increased phospho-p53 (S15) and phospho-histone H2AX (S139) expressions, indicating induction of DNA damage and p53-dependent apoptosis. Both complexes also reduced HCT116 cell growth in a xenograft model. Tumor mass inhibition rates were 35.06, 29.71, and 32.03% for the complex 1 (15 µmol/kg/day), complex 2 (15 µmol/kg/day), and piplartine (60 µmol/kg/day), respectively. These data indicate these ruthenium complexes as new anti-colon cancer drugs candidates.

14.
Molecules ; 23(11)2018 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-30441836

RESUMO

Croton matourensis Aubl. (synonym Croton lanjouwensis Jabl.), popularly known as "orelha de burro", "maravuvuia", and/or "sangrad'água", is a medicinal plant used in Brazilian folk medicine as a depurative and in the treatment of infections, fractures, and colds. In this work, we investigated the chemical composition and in vitro cytotoxic and in vivo antitumor effects of the essential oil (EO) from the leaves of C. matourensis collected from the Amazon rainforest. The EO was obtained by hydrodistillation using a Clevenger-type apparatus and characterized qualitatively and quantitatively by gas chromatography coupled to mass spectrometry (GC⁻MS) and gas chromatography with flame ionization detection (GC⁻FID), respectively. In vitro cytotoxicity of the EO was assessed in cancer cell lines (MCF-7, HCT116, HepG2, and HL-60) and the non-cancer cell line (MRC-5) using the Alamar blue assay. Furthermore, annexin V-FITC/PI staining and the cell cycle distribution were evaluated with EO-treated HepG2 cells by flow cytometry. In vivo efficacy of the EO (40 and 80 mg/kg/day) was demonstrated in C.B-17 severe combined immunodeficient (SCID) mice with HepG2 cell xenografts. The EO included ß-caryophyllene, thunbergol, cembrene, p-cymene, and ß-elemene as major constituents. The EO exhibited promising cytotoxicity and was able to cause phosphatidylserine externalization and DNA fragmentation without loss of the cell membrane integrity in HepG2 cells. In vivo tumor mass inhibition rates of the EO were 34.6% to 55.9%. Altogether, these data indicate the anticancer potential effect of C. matourensis.


Assuntos
Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Croton/química , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Folhas de Planta/química , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Camundongos , Compostos Fitoquímicos/química , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...