Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 53(36): 14995-15009, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39076042

RESUMO

Developing and investigating advanced multifunctional materials with magnetic properties as candidates for assembling spin qubits for quantum computing is imperative. A new polytopic ligand based on oxamate and aniline was used to promote the synthesis of three neutral homometallic lanthanide-coordinated polymers. New complexes with the formula {Ln(phox)3(DMSO)2(H2O)}n, where Ln = Eu3+ (1), Gd3+ (2), and Tb3+ (3) [phox = N-(phenyl)oxamate and DMSO = dimethylsulfoxide], were synthesized and well characterized by spectroscopic methods as well as X-ray crystallographic analysis. All crystalline structures comprise neutral zigzag chains. The lanthanide ions are linked by three phox ligands, in which two oxygen atoms from two different ligands are responsible for connecting the trivalent lanthanide ions, and one phox ligand completes the coordination sphere in a bis-bidentate mode, together with two DMSO molecules and one water coordination molecule. The coordination sphere of lanthanide ions consisted of spherical capped square antiprism (CSAPR-9) symmetry. The magnetic properties of 1-3 were investigated in the 2-300 K temperature range. The dynamic (ac) magnetic properties of 2 reveal a frequency dependence involving the phonon bottleneck mechanism below 33 K under nonzero applied dc magnetic fields, resulting in an example of a field-induced single-molecule magnet. Solid-state photophysical measurements for Eu3+ (1) and Tb3+ (3) complexes indicate that the N-(phenyl)oxamate ligands are very efficient in sensitizing the lanthanide(III) ions in the visible region of the electromagnetic spectrum. Compounds 1 and 3 exhibited an emission in the red and green regions, respectively. Experimental results and theoretical calculations using the Sparkle/RM1 method support a quantum efficiency of ∼72% for 1, suggesting its potential as a candidate for light conversion molecular devices (LCMDs).

2.
Front Bioeng Biotechnol ; 9: 617328, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33859978

RESUMO

Photonic materials featuring simultaneous iridescence and light emission are an attractive alternative for designing novel optical devices. The luminescence study of a new optical material that integrates light emission and iridescence through liquid crystal self-assembly of cellulose nanocrystal-template silica approach is herein presented. These materials containing Rhodamine 6G were obtained as freestanding composite films with a chiral nematic organization. The scanning electron microscopy confirms that the cellulose nanocrystal film structure comprises multi-domain Bragg reflectors and the optical properties of these films can be tuned through changes in the relative content of silica/cellulose nanocrystals. Moreover, the incorporation of the light-emitting compound allows a complementary control of the optical properties. Overall, such findings demonstrated that the photonic structure plays the role of direction-dependent inner-filter, causing selective suppression of the light emitted with angle-dependent detection.

3.
ACS Appl Mater Interfaces ; 12(44): 50033-50038, 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33090755

RESUMO

Fabrication of functional silk fibroin microstructures has extensive applications in biotechnology and photonics. Considerable progress has been made based on lithographic methods and self-assembly approaches. However, most methods require chemical modification of silk fibroin, which restricts the functionalities of the designed materials. At the same time, femtosecond laser-induced forward transfer (fs-LIFT) has been explored as a simple and attractive processing tool for microprinting of high-resolution structures. In this paper, we propose the use of LIFT with fs-pulses for creating high-resolution structures of regenerated silk fibroin (SF). Furthermore, upon adding Eu3+/Tb3+ complexes to SF, we have been able to demonstrate the printing by LIFT of luminescent SF structures with a resolution on the order of 2 µm and without material degradation. This approach provides a facile method for printing well-defined two-dimensional (2D) micropatterns of pure and functionalized SF, which can be used in a wide range of optical and biomedical applications.


Assuntos
Fibroínas/química , Lasers , Compostos Organometálicos/química , Impressão Tridimensional , Fibroínas/isolamento & purificação , Compostos Organometálicos/síntese química , Tamanho da Partícula , Propriedades de Superfície , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA