Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 258: 119424, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38879109

RESUMO

Birds are good bioindicators of disturbance in the environment. They are present in different habitats and trophic levels. In addition, rapid urbanization has led birds to use cities as shelter and for seeking food resources. Sewage treatment plants (STPs) are suitable locations for free-living birds within cities. However, few studies address the impacts of emerging pollutants from sewage treatment plants on wild birds. In this sense, the aim of this study was to analyze the genotoxic, mutagenic, and immunological impacts from metal and pollutant exposure on free-living birds collected at a STP. For comparison, birds were collected in a preserved environment, the Silvania National Forest (FLONA). To achieve this, we used non-destructive biomarkers sensitive to environmental changes. Birds were collected in both environments using mist nets. After collection, birds were weighed, measured, species-identified, and released. Blood was collected for comet assay, micronucleus test, and leukocyte profile, while feathers were collected for metal concentration analysis. Water physicochemical parameters were measured at both sites, and water samples were collected for metal analysis. Our results demonstrated that birds collected at the STP exhibit a higher frequency of genotoxic damage and erythrocyte abnormalities, and increased immune response compared to FLONA birds. Traces of potentially toxic metals, such as Hg and As, were found in the birds feathers from both environments, raising concerns about metal contamination in both environments. Trophic guilds appear to respond similarly to exposure. The parameters and metals found in the water reflect environmental characteristics and may be influencing pollutant availability. Finally, despite the advancement of our findings, studies linking these damages to detrimental effects on behavior and reproduction are encouraged.


Assuntos
Biomarcadores , Aves , Urbanização , Animais , Biomarcadores/sangue , Monitoramento Ambiental/métodos , Testes para Micronúcleos , Ensaio Cometa , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Esgotos , Brasil , Metais/análise , Metais/toxicidade , Dano ao DNA , Plumas/química , Ecotoxicologia
2.
Chemosphere ; 353: 141590, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460844

RESUMO

Nanoparticles have applications in many sectors in the society. ZnWO4 nanoparticles (ZnWO4-NPs) have potential in the fabrication of sensors, lasers, and batteries, and in environmental remediation. Thus, these NPs may reach aquatic ecosystems. However, we still do not know their effects on aquatic biota and, to our knowledge, this is the first study that evaluates the toxicity of ZnWO4-NPs in a eukaryotic organism. We evaluated the toxicity of ZnWO4-NPs on the green microalga Raphidocelis subcapitata for 96 h, in terms of growth, cell parameters, photosynthesis, and biochemical analysis. Results show that most of Zn was presented in its particulate form, with low amounts of Zn2+, resulting in toxicity at higher levels. The growth was affected from 8.4 mg L-1, with 96h-IC50 of 23.34 mg L-1. The chlorophyll a (Chl a) content increased at 30.2 mg L-1, while the fluorescence of Chl a (FL3-H) decreased at 15.2 mg L-1. We observed increased ROS levels at 44.4 mg L-1. Regarding photosynthesis, the NPs affected the oxygen evolving complex (OEC) and the efficiency of the photosystem II at 22.9 mg L-1. At 44.4 mg L-1 the qP decreased, indicating closure of reaction centers, probably affecting carbon assimilation, which explains the decay of carbohydrates. There was a decrease of qN (non-regulated energy dissipation, not used in photosynthesis), NPQ (regulated energy dissipation) and Y(NPQ) (regulated energy dissipation via heat), indicating damage to the photoprotection system; and an increase in Y(NO), which is the non-regulated energy dissipation via heat and fluorescence. The results showed that ZnWO4-NPs can affect the growth and physiological and biochemical parameters of the chlorophycean R. subcapitata. Microalgae are the base of aquatic food chains, the toxicity of emerging contaminants on microalgae can affect entire ecosystems. Therefore, our study can provide some help for better protection of aquatic ecosystems.


Assuntos
Clorofíceas , Microalgas , Nanopartículas , Poluentes Químicos da Água , Clorofila A/análise , Ecossistema , Clorofíceas/fisiologia , Nanopartículas/toxicidade , Fotossíntese , Poluentes Químicos da Água/análise , Clorofila/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA