Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 10: 1134, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31611888

RESUMO

Somatic embryogenesis (SE) is the most striking and prominent example of plant plasticity upon severe stress. Inducing immature carrot seeds perform SE as substitute to germination by auxin treatment can be seen as switch between stress levels associated to morphophysiological plasticity. This experimental system is highly powerful to explore stress response factors that mediate the metabolic switch between cell and tissue identities. Developmental plasticity per se is an emerging trait for in vitro systems and crop improvement. It is supposed to underlie multi-stress tolerance. High plasticity can protect plants throughout life cycles against variable abiotic and biotic conditions. We provide proof of concepts for the existing hypothesis that alternative oxidase (AOX) can be relevant for developmental plasticity and be associated to yield stability. Our perspective on AOX as relevant coordinator of cell reprogramming is supported by real-time polymerase chain reaction (PCR) analyses and gross metabolism data from calorespirometry complemented by SHAM-inhibitor studies on primed, elevated partial pressure of oxygen (EPPO)-stressed, and endophyte-treated seeds. In silico studies on public experimental data from diverse species strengthen generality of our insights. Finally, we highlight ready-to-use concepts for plant selection and optimizing in vivo and in vitro propagation that do not require further details on molecular physiology and metabolism. This is demonstrated by applying our research & technology concepts to pea genotypes with differential yield performance in multilocation fields and chickpea types known for differential robustness in the field. By using these concepts and tools appropriately, also other marker candidates than AOX and complex genomics data can be efficiently validated for prebreeding and seed vigor prediction.

2.
Int J Mol Sci ; 19(2)2018 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-29462998

RESUMO

Propagation of some Olea europaea L. cultivars is strongly limited due to recalcitrant behavior in adventitious root formation by semi-hardwood cuttings. One example is the cultivar "Galega vulgar". The formation of adventitious roots is considered a morphological response to stress. Alternative oxidase (AOX) is the terminal oxidase of the alternative pathway of the plant mitochondrial electron transport chain. This enzyme is well known to be induced in response to several biotic and abiotic stress situations. This work aimed to characterize the alternative oxidase 1 (AOX1)-subfamily in olive and to analyze the expression of transcripts during the indole-3-butyric acid (IBA)-induced in vitro adventitious rooting (AR) process. OeAOX1a (acc. no. MF410318) and OeAOX1d (acc. no. MF410319) were identified, as well as different transcript variants for both genes which resulted from alternative polyadenylation events. A correlation between transcript accumulation of both OeAOX1a and OeAOX1d transcripts and the three distinct phases (induction, initiation, and expression) of the AR process in olive was observed. Olive AOX1 genes seem to be associated with the induction and development of adventitious roots in IBA-treated explants. A better understanding of the molecular mechanisms underlying the stimulus needed for the induction of adventitious roots may help to develop more targeted and effective rooting induction protocols in order to improve the rooting ability of difficult-to-root cultivars.


Assuntos
Galega/genética , Proteínas Mitocondriais/genética , Olea/genética , Oxirredutases/genética , Proteínas de Plantas/genética , Raízes de Plantas/genética , Galega/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Indóis/farmacologia , Olea/efeitos dos fármacos , Olea/crescimento & desenvolvimento , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento
3.
Physiol Plant ; 137(4): 532-52, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19941624

RESUMO

Olive (Olea europaea L.) trees are mainly propagated by adventitious rooting of semi-hardwood cuttings. However, efficient commercial propagation of valuable olive tree cultivars or landraces by semi-hardwood cuttings can often be restricted by a low rooting capacity. We hypothesize that root induction is a plant cell reaction linked to oxidative stress and that activity of stress-induced alternative oxidase (AOX) is importantly involved in adventitious rooting. To identify AOX as a source for potential functional marker sequences that may assist tree breeding, genetic variability has to be demonstrated that can affect gene regulation. The paper presents an applied, multidisciplinary research approach demonstrating first indications of an important relationship between AOX activity and differential adventitious rooting in semi-hardwood cuttings. Root induction in the easy-to-root Portuguese cultivar 'Cobrançosa' could be significantly reduced by treatment with salicyl-hydroxamic acid, an inhibitor of AOX activity. On the contrary, treatment with H2O2 or pyruvate, both known to induce AOX activity, increased the degree of rooting. Recently, identification of several O. europaea (Oe) AOX gene sequences has been reported from our group. Here we present for the first time partial sequences of OeAOX2. To search for polymorphisms inside of OeAOX genes, partial OeAOX2 sequences from the cultivars 'Galega vulgar', 'Cobrançosa' and 'Picual' were cloned from genomic DNA and cDNA, including exon, intron and 3'-untranslated regions (3'-UTRs) sequences. The data revealed polymorphic sites in several regions of OeAOX2. The 3'-UTR was the most important source for polymorphisms showing 5.7% of variability. Variability in the exon region accounted 3.4 and 2% in the intron. Further, analysis performed at the cDNA from microshoots of 'Galega vulgar' revealed transcript length variation for the 3'-UTR of OeAOX2 ranging between 76 and 301 bp. The identified polymorphisms and 3'-UTR length variation can be explored in future studies for effects on gene regulation and a potential linkage to olive rooting phenotypes in view of marker-assisted plant selection.


Assuntos
Variação Genética , Olea/genética , Olea/fisiologia , Oxirredutases/metabolismo , Raízes de Plantas/enzimologia , Raízes de Plantas/crescimento & desenvolvimento , Regiões 3' não Traduzidas/genética , Sequência de Aminoácidos , Sequência de Bases , Biomarcadores/metabolismo , Ativadores de Enzimas/farmacologia , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Variação Genética/efeitos dos fármacos , MicroRNAs/química , MicroRNAs/genética , Proteínas Mitocondriais , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Olea/efeitos dos fármacos , Olea/enzimologia , Oxirredutases/antagonistas & inibidores , Oxirredutases/química , Oxirredutases/genética , Proteínas de Plantas , Raízes de Plantas/efeitos dos fármacos , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/enzimologia , Poliadenilação/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA