Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEMS Microbiol Lett ; 362(13): fnv091, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26025069

RESUMO

Yersinia pseudotuberculosis is a foodborne enteric pathogen that causes a mild self-limiting diarrhea in humans. Yersinia pseudotuberculosis is able to persist in soil and water and in association with fresh produce, but the mechanism by which it persists is unknown. It has been shown that Y. pseudotuberculosis co-occurs with protozoans in these environments; therefore, this study investigates if bacterivorous free-living amoeba (FLA) are able to support persistence of Y. pseudotuberculosis. Coculture studies of Y. pseudotuberculosis and the prototype FLA, Acanthamoeba castellanii revealed that bacteria had an enhanced capacity to survive in association with amoeba and in the absence of any cytotoxic effects. Yersinia pseudotuberculosis is able to survive and replicate in trophozoites specifically localized within vacuoles, and persists within cysts over a period of at least a week. These data present the first evidence that Y. pseudotuberculosis is able to resist the bacterivorous nature of FLA and instead exhibits an enhanced ability to replicate and persist in coculture with amoeba. This study sheds light on the potential role of FLA in the ecology of Y. pseudotuberculosis which may have implications for food safety.


Assuntos
Acanthamoeba castellanii/microbiologia , Acanthamoeba castellanii/fisiologia , Viabilidade Microbiana , Trofozoítos/microbiologia , Yersinia pseudotuberculosis/crescimento & desenvolvimento , Animais , Técnicas de Cocultura , Inocuidade dos Alimentos , Humanos , Estágios do Ciclo de Vida
2.
PLoS Pathog ; 9(11): e1003770, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24278018

RESUMO

Membrane fusion is essential for entry of the biomedically-important paramyxoviruses into their host cells (viral-cell fusion), and for syncytia formation (cell-cell fusion), often induced by paramyxoviral infections [e.g. those of the deadly Nipah virus (NiV)]. For most paramyxoviruses, membrane fusion requires two viral glycoproteins. Upon receptor binding, the attachment glycoprotein (HN/H/G) triggers the fusion glycoprotein (F) to undergo conformational changes that merge viral and/or cell membranes. However, a significant knowledge gap remains on how HN/H/G couples cell receptor binding to F-triggering. Via interdisciplinary approaches we report the first comprehensive mechanism of NiV membrane fusion triggering, involving three spatiotemporally sequential cell receptor-induced conformational steps in NiV-G: two in the head and one in the stalk. Interestingly, a headless NiV-G mutant was able to trigger NiV-F, and the two head conformational steps were required for the exposure of the stalk domain. Moreover, the headless NiV-G prematurely triggered NiV-F on virions, indicating that the NiV-G head prevents premature triggering of NiV-F on virions by concealing a F-triggering stalk domain until the correct time and place: receptor-binding. Based on these and recent paramyxovirus findings, we present a comprehensive and fundamentally conserved mechanistic model of paramyxovirus membrane fusion triggering and cell entry.


Assuntos
Glicoproteínas/metabolismo , Proteínas de Fusão de Membrana/metabolismo , Vírus Nipah/fisiologia , Receptores Virais/metabolismo , Proteínas Virais/metabolismo , Internalização do Vírus , Animais , Células CHO , Cricetinae , Cricetulus , Glicoproteínas/genética , Infecções por Henipavirus/genética , Infecções por Henipavirus/metabolismo , Proteínas de Fusão de Membrana/genética , Receptores Virais/genética , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...