Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(7): 3682-3701, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38321954

RESUMO

Retinoic acid (RA) is the ligand of RA receptors (RARs), transcription factors that bind to RA response elements. RA signaling is required for multiple processes during embryonic development, including body axis extension, hindbrain antero-posterior patterning and forelimb bud initiation. Although some RA target genes have been identified, little is known about the genome-wide effects of RA signaling during in vivo embryonic development. Here, we stimulate the RA pathway by treating zebrafish embryos with all-trans-RA (atRA) and use a combination of RNA-seq, ATAC-seq, ChIP-seq and HiChIP to gain insight into the molecular mechanisms by which exogenously induced RA signaling controls gene expression. We find that RA signaling is involved in anterior/posterior patterning, central nervous system development, and the transition from pluripotency to differentiation. AtRA treatment also alters chromatin accessibility during early development and promotes chromatin binding of RARαa and the RA targets Hoxb1b, Meis2b and Sox3, which cooperate in central nervous system development. Finally, we show that exogenous RA induces a rewiring of chromatin architecture, with alterations in chromatin 3D interactions involving target genes. Altogether, our findings identify genome-wide targets of RA signaling and provide a molecular mechanism by which developmental signaling pathways regulate target gene expression by altering chromatin topology.


Assuntos
Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Tretinoína , Animais , Cromatina/metabolismo , Embrião não Mamífero/metabolismo , Embrião não Mamífero/efeitos dos fármacos , Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/efeitos dos fármacos , Epigenoma , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Tretinoína/farmacologia , Tretinoína/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
2.
J Exp Clin Cancer Res ; 43(1): 57, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38403587

RESUMO

BACKGROUND: Hypoxia in solid tumors is an important source of chemoresistance that can determine poor patient prognosis. Such chemoresistance relies on the presence of cancer stem cells (CSCs), and hypoxia promotes their generation through transcriptional activation by HIF transcription factors. METHODS: We used ovarian cancer (OC) cell lines, xenograft models, OC patient samples, transcriptional databases, induced pluripotent stem cells (iPSCs) and Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq). RESULTS: Here, we show that hypoxia induces CSC formation and chemoresistance in ovarian cancer through transcriptional activation of the PLD2 gene. Mechanistically, HIF-1α activates PLD2 transcription through hypoxia response elements, and both hypoxia and PLD2 overexpression lead to increased accessibility around stemness genes, detected by ATAC-seq, at sites bound by AP-1 transcription factors. This in turn provokes a rewiring of stemness genes, including the overexpression of SOX2, SOX9 or NOTCH1. PLD2 overexpression also leads to decreased patient survival, enhanced tumor growth and CSC formation, and increased iPSCs reprograming, confirming its role in dedifferentiation to a stem-like phenotype. Importantly, hypoxia-induced stemness is dependent on PLD2 expression, demonstrating that PLD2 is a major determinant of de-differentiation of ovarian cancer cells to stem-like cells in hypoxic conditions. Finally, we demonstrate that high PLD2 expression increases chemoresistance to cisplatin and carboplatin treatments, both in vitro and in vivo, while its pharmacological inhibition restores sensitivity. CONCLUSIONS: Altogether, our work highlights the importance of the HIF-1α-PLD2 axis for CSC generation and chemoresistance in OC and proposes an alternative treatment for patients with high PLD2 expression.


Assuntos
Neoplasias Ovarianas , Fosfolipase D , Feminino , Humanos , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Células-Tronco Neoplásicas/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Fatores de Transcrição/metabolismo , Fosfolipase D/genética , Hipóxia Tumoral , Animais
3.
Cell Rep ; 39(12): 110988, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35732123

RESUMO

MacroH2A histone variants have a function in gene regulation that is poorly understood at the molecular level. We report that macroH2A1.2 and macroH2A2 modulate the transcriptional ground state of cancer cells and how they respond to inflammatory cytokines. Removal of macroH2A1.2 and macroH2A2 in hepatoblastoma cells affects the contact frequency of promoters and distal enhancers coinciding with changes in enhancer activity or preceding them in response to the cytokine tumor necrosis factor alpha. Although macroH2As regulate genes in both directions, they globally facilitate the nuclear factor κB (NF-κB)-mediated response. In contrast, macroH2As suppress the response to the pro-inflammatory cytokine interferon gamma. MacroH2A2 has a stronger contribution to gene repression than macroH2A1.2. Taken together, our results suggest that macroH2As have a role in regulating the response of cancer cells to inflammatory signals on the level of chromatin structure. This is likely relevant for the interaction of cancer cells with immune cells of their microenvironment.


Assuntos
Citocinas , Regulação da Expressão Gênica , NF-kappa B , Regiões Promotoras Genéticas/genética
4.
Nat Commun ; 12(1): 5415, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34518536

RESUMO

Coordinated chromatin interactions between enhancers and promoters are critical for gene regulation. The architectural protein CTCF mediates chromatin looping and is enriched at the boundaries of topologically associating domains (TADs), which are sub-megabase chromatin structures. In vitro CTCF depletion leads to a loss of TADs but has only limited effects over gene expression, challenging the concept that CTCF-mediated chromatin structures are a fundamental requirement for gene regulation. However, how CTCF and a perturbed chromatin structure impacts gene expression during development remains poorly understood. Here we link the loss of CTCF and gene regulation during patterning and organogenesis in a ctcf knockout zebrafish model. CTCF absence leads to loss of chromatin structure and affects the expression of thousands of genes, including many developmental regulators. Our results demonstrate the essential role of CTCF in providing the structural context for enhancer-promoter interactions, thus regulating developmental genes.


Assuntos
Fator de Ligação a CCCTC/genética , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Inativação de Genes/métodos , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Padronização Corporal/genética , Fator de Ligação a CCCTC/deficiência , Sistemas CRISPR-Cas , Cromatina/genética , Cromatina/metabolismo , Embrião não Mamífero/embriologia , Elementos Facilitadores Genéticos/genética , Organogênese/genética , Regiões Promotoras Genéticas/genética , RNA-Seq/métodos , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/deficiência
5.
Front Cell Dev Biol ; 9: 702787, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34295901

RESUMO

Animal genomes are folded in topologically associating domains (TADs) that have been linked to the regulation of the genes they contain by constraining regulatory interactions between cis-regulatory elements and promoters. Therefore, TADs are proposed as structural scaffolds for the establishment of regulatory landscapes (RLs). In this review, we discuss recent advances in the connection between TADs and gene regulation, their relationship with gene RLs and their dynamics during development and differentiation. Moreover, we describe how restructuring TADs may lead to pathological conditions, which explains their high evolutionary conservation, but at the same time it provides a substrate for the emergence of evolutionary innovations that lay at the origin of vertebrates and other phylogenetic clades.

6.
Plants (Basel) ; 10(4)2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33917507

RESUMO

Histone modifications are of paramount importance during plant development. Investigating chromatin remodeling in developing oilseeds sheds light on the molecular mechanisms controlling fatty acid metabolism and facilitates the identification of new functional regions in oil crop genomes. The present study characterizes the epigenetic modifications H3K4me3 in relationship with the expression of fatty acid-related genes and transcription factors in developing sunflower seeds. Two master transcriptional regulators identified in this analysis, VIV1 (homologous to Arabidopsis ABI3) and FUS3, cooperate in the regulation of WRINKLED 1, a transcriptional factor regulating glycolysis, and fatty acid synthesis in developing oilseeds.

7.
Front Genet ; 11: 339, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32411176

RESUMO

The transcription factor p63 is an essential regulator of vertebrate ectoderm development, including epidermis, limbs, and craniofacial tissues. Here, we have investigated the evolutionary conservation of p63 binding sites (BSs) between zebrafish and human. First, we have analyzed sequence conservation of p63 BSs by comparing ChIP-seq data from human keratinocytes and zebrafish embryos, observing a very poor conservation. Next, we compared the gene regulatory network orchestrated by p63 in both species and found a high overlap between them, suggesting a high degree of functional conservation during evolution despite sequence divergence and the large evolutionary distance. Finally, we used transgenic reporter assays in zebrafish embryos to functionally validate a set of equivalent p63 BSs from zebrafish and human located close to genes involved in epidermal development. Reporter expression was driven by human and zebrafish BSs to many common tissues related to p63 expression domains. Therefore, we conclude that the gene regulatory network controlled by p63 is highly conserved across vertebrates despite the fact that p63-bound regulatory elements show high divergence.

8.
Nat Commun ; 10(1): 3049, 2019 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-31296872

RESUMO

The transcription factor p63 is a master regulator of ectoderm development. Although previous studies show that p63 triggers epidermal differentiation in vitro, the roles of p63 in developing embryos remain poorly understood. Here, we use zebrafish embryos to analyze in vivo how p63 regulates gene expression during development. We generate tp63-knock-out mutants that recapitulate human phenotypes and show down-regulated epidermal gene expression. Following p63-binding dynamics, we find two distinct functions clearly separated in space and time. During early development, p63 binds enhancers associated to neural genes, limiting Sox3 binding and reducing neural gene expression. Indeed, we show that p63 and Sox3 are co-expressed in the neural plate border. On the other hand, p63 acts as a pioneer factor by binding non-accessible chromatin at epidermal enhancers, promoting their opening and epidermal gene expression in later developmental stages. Therefore, our results suggest that p63 regulates cell fate decisions during vertebrate ectoderm specification.


Assuntos
Ectoderma/embriologia , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Placa Neural/embriologia , Fosfoproteínas/metabolismo , Transativadores/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Sistemas CRISPR-Cas/genética , Diferenciação Celular/genética , Cromatina/metabolismo , Regulação para Baixo , Ectoderma/metabolismo , Embrião não Mamífero , Elementos Facilitadores Genéticos/genética , Epiderme/embriologia , Epiderme/metabolismo , Técnicas de Inativação de Genes , Modelos Animais , Placa Neural/metabolismo , Fosfoproteínas/genética , Ligação Proteica/genética , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Transativadores/genética , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/genética
9.
Nucleic Acids Res ; 47(8): 4054-4067, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30715474

RESUMO

DNA lesions interfere with cellular processes such as transcription and replication and need to be adequately resolved to warrant genome integrity. Beyond their primary role in molecule transport, nuclear pore complexes (NPCs) function in other processes such as transcription, nuclear organization and DNA double strand break (DSB) repair. Here we found that the removal of UV-induced DNA lesions by nucleotide excision repair (NER) is compromised in the absence of the Nup84 nuclear pore component. Importantly, nup84Δ cells show an exacerbated sensitivity to UV in early S phase and delayed replication fork progression, suggesting that unrepaired spontaneous DNA lesions persist during S phase. In addition, nup84Δ cells are defective in the repair of replication-born DSBs by sister chromatid recombination (SCR) and rely on post-replicative repair functions for normal proliferation, indicating dysfunctions in the cellular pathways that enable replication on damaged DNA templates. Altogether, our data reveal a central role of the NPC in the DNA damage response to facilitate replication progression through damaged DNA templates by promoting efficient NER and SCR and preventing chromosomal rearrangements.


Assuntos
Reparo do DNA , DNA Fúngico/genética , Genoma Fúngico , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Pontos de Checagem da Fase S do Ciclo Celular/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Replicação do DNA/efeitos da radiação , DNA Fúngico/metabolismo , Instabilidade Genômica , Poro Nuclear/metabolismo , Poro Nuclear/efeitos da radiação , Complexo de Proteínas Formadoras de Poros Nucleares/deficiência , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Pontos de Checagem da Fase S do Ciclo Celular/efeitos da radiação , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efeitos da radiação , Proteínas de Saccharomyces cerevisiae/metabolismo , Troca de Cromátide Irmã , Raios Ultravioleta
10.
PLoS Genet ; 12(4): e1005966, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27035147

RESUMO

Yra1 is an essential nuclear factor of the evolutionarily conserved family of hnRNP-like export factors that when overexpressed impairs mRNA export and cell growth. To investigate further the relevance of proper Yra1 stoichiometry in the cell, we overexpressed Yra1 by transforming yeast cells with YRA1 intron-less constructs and analyzed its effect on gene expression and genome integrity. We found that YRA1 overexpression induces DNA damage and leads to a transcription-associated hyperrecombination phenotype that is mediated by RNA:DNA hybrids. In addition, it confers a genome-wide replication retardation as seen by reduced BrdU incorporation and accumulation of the Rrm3 helicase. In addition, YRA1 overexpression causes a cell senescence-like phenotype and telomere shortening. ChIP-chip analysis shows that overexpressed Yra1 is loaded to transcribed chromatin along the genome and to Y' telomeric regions, where Rrm3 is also accumulated, suggesting an impairment of telomere replication. Our work not only demonstrates that a proper stoichiometry of the Yra1 mRNA binding and export factor is required to maintain genome integrity and telomere homeostasis, but suggests that the cellular imbalance between transcribed RNA and specific RNA-binding factors may become a major cause of genome instability mediated by co-transcriptional replication impairment.


Assuntos
Replicação do DNA , Instabilidade Genômica , Proteínas Nucleares/fisiologia , Proteínas de Ligação a RNA/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/genética , Encurtamento do Telômero , Transcrição Gênica , Genes Fúngicos , Hibridização de Ácido Nucleico , Recombinação Genética
11.
Nat Rev Genet ; 16(10): 583-97, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26370899

RESUMO

R loops are nucleic acid structures composed of an RNA-DNA hybrid and a displaced single-stranded DNA. Recently, evidence has emerged that R loops occur more often in the genome and have greater physiological relevance, including roles in transcription and chromatin structure, than was previously predicted. Importantly, however, R loops are also a major threat to genome stability. For this reason, several DNA and RNA metabolism factors prevent R-loop formation in cells. Dysfunction of these factors causes R-loop accumulation, which leads to replication stress, genome instability, chromatin alterations or gene silencing, phenomena that are frequently associated with cancer and a number of genetic diseases. We review the current knowledge of the mechanisms controlling R loops and their putative relationship with disease.


Assuntos
DNA/química , RNA/química , Cromatina/metabolismo , DNA/genética , DNA/metabolismo , DNA de Cadeia Simples/metabolismo , Instabilidade Genômica , Humanos , Neoplasias/genética , Doenças Neurodegenerativas/genética , Conformação de Ácido Nucleico , RNA/genética , RNA/metabolismo , RNA Polimerase II/metabolismo , Transcrição Gênica
12.
Nucleic Acids Res ; 42(19): 12000-14, 2014 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-25294824

RESUMO

The THSC/TREX-2 complex of Saccharomyces cerevisiae mediates the anchoring of transcribed genes to the nuclear pore, linking transcription elongation with mRNA export and genome stability, as shown for specific reporters. However, it is still unknown whether the function of TREX-2 is global and the reason for its relevant role in genome integrity. Here, by studying two TREX-2 representative subunits, Thp1 and Sac3, we show that TREX-2 has a genome-wide role in gene expression. Both proteins show similar distributions along the genome, with a gradient disposition at active genes that increases towards the 3' end. Thp1 and Sac3 have a relevant impact on the expression of long, G+C-rich and highly transcribed genes. Interestingly, replication impairment detected by the genome-wide accumulation of the replicative Rrm3 helicase is increased preferentially at highly expressed genes in the thp1Δ and sac3Δ mutants analyzed. Therefore, our work provides evidence of a function of TREX-2 at the genome-wide level and suggests a role for TREX-2 in preventing transcription-replication conflicts, as a source of genome instability derived from a defective messenger ribonucleoprotein particle (mRNP) biogenesis.


Assuntos
Replicação do DNA , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Porinas/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcrição Gênica , Região 3'-Flanqueadora , DNA Helicases/metabolismo , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Genoma Fúngico , Proteínas de Transporte Nucleocitoplasmático/genética , Porinas/genética , Ribonucleoproteínas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
13.
Cell Cycle ; 13(10): 1524-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24694687

RESUMO

The mRNA is co-transcriptionally bound by a number of RNA-binding proteins (RBPs) that contribute to its processing and formation of an export-competent messenger ribonucleoprotein particle (mRNP). In the last few years, increasing evidence suggests that RBPs play a key role in preventing transcription-associated genome instability. Part of this instability is mediated by the accumulation of co-transcriptional R loops, which may impair replication fork (RF) progression due to collisions between transcription and replication machineries. In addition, some RBPs have been implicated in DNA repair and/or the DNA damage response (DDR). Recently, the Npl3 protein, one of the most abundant heterogeneous nuclear ribonucleoproteins (hnRNPs) in yeast, has been shown to prevent transcription-associated genome instability and accumulation of RF obstacles, partially associated with R-loop formation. Interestingly, Npl3 seems to have additional functions in DNA repair, and npl3∆ mutants are highly sensitive to genotoxic agents, such as the antitumor drug trabectedin. Here we discuss the role of Npl3 in particular, and RBPs in general, in the connection of transcription with replication and genome instability, and its effect on the DDR.


Assuntos
Instabilidade Genômica , Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Reparo do DNA , Replicação do DNA , Dioxóis/farmacologia , Humanos , Saccharomyces cerevisiae/genética , Tetra-Hidroisoquinolinas/farmacologia , Trabectedina , Transcrição Gênica
14.
Genes Dev ; 27(22): 2445-58, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24240235

RESUMO

Transcription is a major obstacle for replication fork (RF) progression and a cause of genome instability. Part of this instability is mediated by cotranscriptional R loops, which are believed to increase by suboptimal assembly of the nascent messenger ribonucleoprotein particle (mRNP). However, no clear evidence exists that heterogeneous nuclear RNPs (hnRNPs), the basic mRNP components, prevent R-loop stabilization. Here we show that yeast Npl3, the most abundant RNA-binding hnRNP, prevents R-loop-mediated genome instability. npl3Δ cells show transcription-dependent and R-loop-dependent hyperrecombination and genome-wide replication obstacles as determined by accumulation of the Rrm3 helicase. Such obstacles preferentially occur at long and highly expressed genes, to which Npl3 is preferentially bound in wild-type cells, and are reduced by RNase H1 overexpression. The resulting replication stress confers hypersensitivity to double-strand break-inducing agents. Therefore, our work demonstrates that mRNP factors are critical for genome integrity and opens the option of using them as therapeutic targets in anti-cancer treatment.


Assuntos
Replicação do DNA/genética , Instabilidade Genômica/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transcrição Gênica/genética , Região 3'-Flanqueadora , Dano ao DNA , DNA Helicases/genética , DNA Helicases/metabolismo , Deleção de Genes , Genoma Fúngico , Ribonucleoproteínas Nucleares Heterogêneas/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Mutagênicos/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos
15.
Mol Cell ; 52(4): 583-90, 2013 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-24211264

RESUMO

R loops are transcription byproducts that constitute a threat to genome integrity. Here we show that R loops are tightly linked to histone H3 S10 phosphorylation (H3S10P), a mark of chromatin condensation. Chromatin immunoprecipitation (ChIP)-on-chip (ChIP-chip) analyses reveal H3S10P accumulation at centromeres, pericentromeric chromatin, and a large number of active open reading frames (ORFs) in R-loop-accumulating yeast cells, better observed in G1. Histone H3S10 plays a key role in maintaining genome stability, as scored by ectopic recombination and plasmid loss, Rad52 foci, and Rad53 checkpoint activation. H3S10P coincides with the presence of DNA-RNA hybrids, is suppressed by ribonuclease H overexpression, and causes reduced accessibility of restriction endonucleases, implying a tight connection between R loops, H3S10P, and chromatin compaction. Such histone modifications were also observed in R-loop-accumulating Caenorhabditis elegans and HeLa cells. We therefore provide a role of RNA in chromatin structure essential to understand how R loops modulate genome dynamics.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , DNA de Cadeia Simples/genética , Histonas/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Saccharomyces cerevisiae/metabolismo , Animais , Caenorhabditis elegans/genética , Montagem e Desmontagem da Cromatina , Imunoprecipitação da Cromatina , Instabilidade Genômica , Células HeLa , Humanos , Meiose , Mitose , Fases de Leitura Aberta , Fosforilação , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/genética , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...