Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 299(8): 105036, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37442232

RESUMO

Arsenic contamination of groundwater is among one of the biggest health threats affecting millions of people in the world. There is an urgent need for efficient arsenic biosensors where the use of arsenic metabolizing enzymes can be explored. In this work, we have solved four crystal structures of arsenite oxidase (Aio) in complex with arsenic and antimony oxyanions and the structures determined correspond to intermediate states of the enzymatic mechanism. These structural data were complemented with density-functional theory calculations providing a unique view of the molybdenum active site at different time points that, together with mutagenesis data, enabled to clarify the enzymatic mechanism and the molecular determinants for the oxidation of As(III) to the less toxic As(V) species.


Assuntos
Arsênio , Arsenitos , Humanos , Antimônio , Oxirredução
2.
Methods Mol Biol ; 2652: 199-213, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37093477

RESUMO

Thermal shift assay (TSA), also commonly designed by differential scanning fluorimetry (DSF) or ThermoFluor, is a technique relatively easy to implement and perform, useful in a myriad of applications. In addition to versatility, it is also rather inexpensive, making it suitable for high-throughput approaches. TSA uses a fluorescent dye to monitor the thermal denaturation of the protein under study and determine its melting temperature (Tm). One of its main applications is to identify the best buffers and additives that enhance protein stability.Understanding the TSA operating mode and the main methodological steps is a central key to designing effective experiments and retrieving meaningful conclusions. This chapter intends to present a straightforward TSA protocol, with different troubleshooting tips, to screen effective protein stabilizers such as buffers and additives, as well as data treatment and analysis. TSA results provide conditions in which the protein of interest is stable and therefore suitable to carry out further biophysical and structural characterization.


Assuntos
Corantes Fluorescentes , Proteínas , Proteínas/química , Temperatura , Estabilidade Proteica , Fluorometria/métodos , Soluções Tampão
3.
Methods Mol Biol ; 2652: 381-403, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37093488

RESUMO

Small-angle X-ray Scattering (SAXS) is a versatile and powerful technique with applications in a wide range of fields. The continuous improvements in hardware, data analysis software, and standards for validation significantly contributed to increase its popularity and, nowadays, SAXS is a well-established method. SAXS allows to study flexible and dynamic systems (e.g., proteins and other biomolecules) in solution, providing information about their size and shape. Contrary to other structural characterization methods, SAXS has no limitations on the size of the particle under study and can be used in integrated approaches to reveal important insights otherwise difficult to obtain regarding folding-unfolding, conformational changes, movement of flexible regions, and the formation of complexes.This chapter, in addition to a concise overview on the methodology, intends to systematically enumerate the main steps involved in sample preparation and data collection, processing and analysis including useful practical notes to identify and overcome common bottlenecks. This way, a less experienced user can use the content of the chapter as a starting point to properly design and perform a successful SAXS experiment.


Assuntos
Proteínas , Software , Difração de Raios X , Espalhamento a Baixo Ângulo , Raios X , Proteínas/química
4.
Chemistry ; 28(40): e202200105, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35486702

RESUMO

Vanadium compounds have frequently been proposed as therapeutics, but their application has been hampered by the lack of information on the different V-containing species that may form and how these interact with blood and cell proteins, and with enzymes. Herein, we report several resolved crystal structures of lysozyme with bound VIV O2+ and VIV OL2+ , where L=2,2'-bipyridine or 1,10-phenanthroline (phen), and of trypsin with VIV O(picolinato)2 and VV O2 (phen)+ moieties. Computational studies complete the refinement and shed light on the relevant role of hydrophobic interactions, hydrogen bonds, and microsolvation in stabilizating the structure. Noteworthy is that the trypsin-VV O2 (phen) and trypsin-VIV O(OH)(phen) adducts correspond to similar energies, thus suggesting a possible interconversion under physiological/biological conditions. The obtained data support the relevance of hydrolysis of VIV and VV complexes in the several types of binding established with proteins and the formation of different adducts that might contribute to their pharmacological action, and significantly widen our knowledge of vanadium-protein interactions.


Assuntos
Compostos Organometálicos , Vanádio , Compostos Organometálicos/química , Fenantrolinas , Proteínas , Tripsina , Vanádio/química , Raios X
5.
J Biomol Struct Dyn ; 40(3): 1430-1440, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-32996404

RESUMO

Cytosolic glutathione S-transferase (GST) enzymes participate in several cellular processes in addition to facilitating glutathione conjugation reactions that eliminate endogenous and exogenous toxic compounds, especially electrophiles. GSTs are thought to interact with various kinases, resulting in the modulation of apoptotic processes and cellular proliferation. The present research used a combination of in silico and in vitro studies to investigate protein-protein interactions between the seven most abundant cytosolic GSTs-GST alpha-1 (GST-A1), GST alpha-2 (GST-A2), GST mu-1 (GST-M1), GST mu-2 (GST-M2), GST mu-5 (GST-M5), GST theta-1 (GST-T1) and GST pi-1 (GST-P1)-and Mitogen-activated protein kinase 8 (MAPK8) and Apoptosis signal-regulating kinase 1 (ASK1). MAPK8 and ASK1 were chosen as this study's protein interaction partners because of their predominant role in electrophile or cytokine-induced stress-mediated apoptosis, inflammation and fibrosis. The highest degree of sequence homology or sequence similarity was observed in two GST subgroups: the GST-A1, GST-A2 and GST-P1 isoforms constituted subgroup1; the GST-M1, GST-M2 and GST-M5 isoforms constituted subgroup 2. The GST-T1 isoform diverged from these isoforms. In silico investigations revealed that GST-M1 showed a significantly higher binding affinity to MAPK8, and its complex was more structurally stable than the other isoforms, in the order GST-M1 > GST-M5 > GST-P1 > GST-A2 > GST-A1 > GST-M2 > GST-T1. Similarly, GST-A1, GST-P1 and GST-T1 actively interacted with ASK1, and their structural stability was also better, in the order GST-T1 > GST-A1 > GST-P1 > GST-A2 > GST-M5 > GST-M1 > GST-M2. To validate in silico results, we performed in vitro crosslinking and mass spectroscopy experiments. Results indicated that GST-M1 interacted with GST-T1 to form heterodimers and confirmed the predicted interaction between GST-M1 and MAPK8.Communicated by Ramaswamy H. Sarma.


Assuntos
MAP Quinase Quinase Quinase 5 , Proteína Quinase 8 Ativada por Mitógeno , Apoptose , Glutationa/metabolismo , Glutationa Transferase/metabolismo , Espectrometria de Massas
6.
Int J Mol Sci ; 22(18)2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34576175

RESUMO

BACKGROUND: The STEAP1 is a cell-surface antigen over-expressed in prostate cancer, which contributes to tumor progression and aggressiveness. However, the molecular mechanisms underlying STEAP1 and its structural determinants remain elusive. METHODS: The fraction capacity of Butyl- and Octyl-Sepharose matrices on LNCaP lysates was evaluated by manipulating the ionic strength of binding and elution phases, followed by a Co-Immunoprecipitation (Co-IP) polishing. Several potential stabilizing additives were assessed, and the melting temperature (Tm) values ranked the best/worst compounds. The secondary structure of STEAP1 was identified by circular dichroism. RESULTS: The STEAP1 was not fully captured with 1.375 M (Butyl), in contrast with interfering heterologous proteins, which were strongly retained and mostly eluted with water. This single step demonstrated higher selectivity of Butyl-Sepharose for host impurities removal from injected crude samples. Co-IP allowed recovering a purified fraction of STEAP1 and contributed to unveil potential physiologically interacting counterparts with the target. A Tm of ~55 °C was determined, confirming STEAP1 stability in the purification buffer. A predominant α-helical structure was identified, ensuring the protein's structural stability. CONCLUSIONS: A method for successfully isolating human STEAP1 from LNCaP cells was provided, avoiding the use of detergents to achieve stability, even outside a membrane-mimicking environment.


Assuntos
Antígenos de Neoplasias/metabolismo , Oxirredutases/metabolismo , Neoplasias da Próstata/metabolismo , Antígenos de Neoplasias/genética , Dicroísmo Circular , Humanos , Imunoprecipitação , Masculino , Oxirredutases/genética , Neoplasias da Próstata/genética , Estabilidade Proteica , Sefarose/análogos & derivados , Sefarose/química
7.
J Med Chem ; 64(17): 13025-13037, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34415167

RESUMO

Human aldehyde oxidase (hAOX1) is mainly present in the liver and has an emerging role in drug metabolism, since it accepts a wide range of molecules as substrates and inhibitors. Herein, we employed an integrative approach by combining NMR, X-ray crystallography, and enzyme inhibition kinetics to understand the inhibition modes of three hAOX1 inhibitors-thioridazine, benzamidine, and raloxifene. These integrative data indicate that thioridazine is a noncompetitive inhibitor, while benzamidine presents a mixed type of inhibition. Additionally, we describe the first crystal structure of hAOX1 in complex with raloxifene. Raloxifene binds tightly at the entrance of the substrate tunnel, stabilizing the flexible entrance gates and elucidating an unusual substrate-dependent mechanism of inhibition with potential impact on drug-drug interactions. This study can be considered as a proof-of-concept for an efficient experimental screening of prospective substrates and inhibitors of hAOX1 relevant in drug discovery.


Assuntos
Aldeído Oxidase/antagonistas & inibidores , Cloridrato de Raloxifeno/farmacologia , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Benzamidinas/química , Benzamidinas/farmacologia , Cristalografia por Raios X , Humanos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Polimorfismo de Nucleotídeo Único , Ligação Proteica , Conformação Proteica , Cloridrato de Raloxifeno/química , Moduladores Seletivos de Receptor Estrogênico/química , Tioridazina/química , Tioridazina/farmacologia
8.
Sci Rep ; 10(1): 19564, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33177617

RESUMO

ATP-binding cassette (ABC) type I importers are widespread in bacteria and play a crucial role in its survival and pathogenesis. They share the same modular architecture comprising two intracellular nucleotide-binding domains (NBDs), two transmembrane domains (TMDs) and a substrate-binding protein. The NBDs bind and hydrolyze ATP, thereby generating conformational changes that are coupled to the TMDs and lead to substrate translocation. A group of multitask NBDs that are able to serve as the cellular motor for multiple sugar importers was recently discovered. To understand why some ABC importers share energy-coupling components, we used the MsmX ATPase from Bacillus subtilis as a model for biological and structural studies. Here we report the first examples of functional hybrid interspecies ABC type I importers in which the NBDs could be exchanged. Furthermore, the first crystal structure of an assigned multitask NBD provides a framework to understand the molecular basis of the broader specificity of interaction with the TMDs.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Adenosina Trifosfatases/genética , Motivos de Aminoácidos , Bacillus subtilis/química , Biologia Computacional/métodos , Cristalografia por Raios X , Firmicutes/química , Firmicutes/metabolismo , Bactérias Gram-Negativas/química , Bactérias Gram-Negativas/metabolismo , Bactérias Gram-Positivas/química , Bactérias Gram-Positivas/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , Domínios Proteicos
9.
Front Microbiol ; 11: 584947, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33424785

RESUMO

Biofilms are generally defined as communities of cells involved in a self-produced extracellular matrix adhered to a surface. In biofilms, the bacteria are less sensitive to host defense mechanisms and antimicrobial agents, due to multiple strategies, that involve modulation of gene expression, controlled metabolic rate, intercellular communication, composition, and 3D architecture of the extracellular matrix. These factors play a key role in streptococci pathogenesis, contributing to therapy failure and promoting persistent infections. The species of the pyogenic group together with Streptococcus pneumoniae are the major pathogens belonging the genus Streptococcus, and its biofilm growth has been investigated, but insights in the genetic origin of biofilm formation are limited. This review summarizes pyogenic streptococci biofilms with details on constitution, formation, and virulence factors associated with formation.

10.
ACS Biomater Sci Eng ; 6(2): 1090-1101, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33464857

RESUMO

CO-releasing molecules (CORMs) have been widely studied for their anti-inflammatory, antiapoptotic, and antiproliferative effects. CORM-3 is a water-soluble Ru-based metal carbonyl complex, which metallates serum proteins and readily releases CO in biological media. In this work, we evaluated the anti-inflammatory and wound-healing effects of gold nanoparticles-CORM-3 conjugates, AuNPs@PEG@BSA·Ru(CO)x, exploring its use as an efficient CO carrier. Our results suggest that the nanoformulation was capable of inducing a more pronounced cell effect, at the anti-inflammatory level and a faster tissue repair, probably derived from a rapid cell uptake of the nanoformulation that results in the increase of CO inside the cell.


Assuntos
Complexos de Coordenação , Nanopartículas Metálicas , Compostos Organometálicos , Monóxido de Carbono , Ouro
11.
Pharmacol Res Perspect ; 7(6): e00538, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31768259

RESUMO

Aldehyde Oxidase (hAOX1) is a cytosolic enzyme involved in the metabolism of drugs and xenobiotic compounds. The enzyme belongs to the xanthine oxidase (XO) family of Mo containing enzyme and is a homo-dimer of two 150 kDa monomers. Nonsynonymous Single Nucleotide Polymorphisms (nsSNPs) of hAOX1 have been reported as affecting the ability of the enzyme to metabolize different substrates. Some of these nsSNPs have been biochemically and structurally characterized but the lack of a systematic and comprehensive study regarding all described and validated nsSNPs is urgent, due to the increasing importance of the enzyme in drug development, personalized medicine and therapy, as well as in pharmacogenetic studies. The objective of the present work was to collect all described nsSNPs of hAOX1 and utilize a series of bioinformatics tools to predict their effect on protein structure stability with putative implications on phenotypic functional consequences. Of 526 nsSNPs reported in NCBI-dbSNP, 119 are identified as deleterious whereas 92 are identified as nondeleterious variants. The stability analysis was performed for 119 deleterious variants and the results suggest that 104 nsSNPs may be responsible for destabilizing the protein structure, whereas five variants may increase the protein stability. Four nsSNPs do not have any impact on protein structure (neutral nsSNPs) of hAOX1. The prediction results of the remaining six nsSNPs are nonconclusive. The in silico results were compared with available experimental data. This methodology can also be used to identify and prioritize the stabilizing and destabilizing variants in other enzymes involved in drug metabolism.


Assuntos
Aldeído Oxidase/genética , Variação Biológica da População/genética , Aldeído Oxidase/metabolismo , Biologia Computacional , Simulação por Computador , Desenvolvimento de Medicamentos , Polimorfismo de Nucleotídeo Único , Estabilidade Proteica
12.
FEBS Open Bio ; 9(5): 925-934, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30985987

RESUMO

Human aldehyde oxidase (hAOX1) is a molybdenum enzyme with high toxicological importance, but its physiological role is still unknown. hAOX1 metabolizes different classes of xenobiotics and is one of the main drug-metabolizing enzymes in the liver, along with cytochrome P450. hAOX1 oxidizes and inactivates a large number of drug molecules and has been responsible for the failure of several phase I clinical trials. The interindividual variability of drug-metabolizing enzymes caused by single nucleotide polymorphisms (SNPs) is highly relevant in pharmaceutical treatments. In this study, we present the crystal structure of the inactive variant G1269R, revealing the first structure of a molybdenum cofactor (Moco)-free form of hAOX1. These data allowed to model, for the first time, the flexible Gate 1 that controls access to the active site. Furthermore, we inspected the thermostability of wild-type hAOX1 and hAOX1 with various SNPs (L438V, R1231H, G1269R or S1271L) by CD spectroscopy and ThermoFAD, revealing that amino acid exchanges close to the Moco site can impact protein stability up to 10 °C. These results correlated with biochemical and structural data and enhance our understanding of hAOX1 and the effect of SNPs in the gene encoding this enzyme in the human population. ENZYMES: Aldehyde oxidase (EC1.2.3.1); xanthine dehydrogenase (EC1.17.1.4); xanthine oxidase (EC1.1.3.2). DATABASES: Structural data are available in the Protein Data Bank under the accession number 6Q6Q.


Assuntos
Aldeído Oxidase/química , Polimorfismo de Nucleotídeo Único , Coenzimas , Cristalografia por Raios X , Humanos , Metaloproteínas , Modelos Moleculares , Cofatores de Molibdênio , Pteridinas
13.
Int J Mol Sci ; 20(4)2019 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-30781512

RESUMO

Bcl-2 protein is involved in cell apoptosis and is considered an interesting target for anti-cancer therapy. The present study aims to understand the stability and conformational changes of Bcl-2 upon interaction with the inhibitor venetoclax, and to explore other drug-target regions. We combined biophysical and in silico approaches to understand the mechanism of ligand binding to Bcl-2. Thermal shift assay (TSA) and urea electrophoresis showed a significant increase in protein stability upon venetoclax incubation, which is corroborated by molecular docking and molecular dynamics simulations. An 18 °C shift in Bcl-2 melting temperature was observed in the TSA, corresponding to a binding affinity multiple times higher than that of any other reported Bcl-2 inhibitor. This protein-ligand interaction does not implicate alternations in protein conformation, as suggested by SAXS. Additionally, bioinformatics approaches were used to identify deleterious non-synonymous single nucleotide polymorphisms (nsSNPs) of Bcl-2 and their impact on venetoclax binding, suggesting that venetoclax interaction is generally favored against these deleterious nsSNPs. Apart from the BH3 binding groove of Bcl-2, the flexible loop domain (FLD) also plays an important role in regulating the apoptotic process. High-throughput virtual screening (HTVS) identified 5 putative FLD inhibitors from the Zinc database, showing nanomolar affinity toward the FLD of Bcl-2.


Assuntos
Fenômenos Biofísicos , Conformação Proteica , Proteínas Proto-Oncogênicas c-bcl-2/química , Apoptose/genética , Sítios de Ligação , Compostos Bicíclicos Heterocíclicos com Pontes/química , Simulação por Computador , Humanos , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Polimorfismo de Nucleotídeo Único/genética , Ligação Proteica , Proteínas Proto-Oncogênicas c-bcl-2/genética , Sulfonamidas/química
14.
Int J Med Microbiol ; 309(3-4): 169-181, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30799091

RESUMO

Streptococcus dysgalactiae subsp. dysgalactiae (SDSD), a Lancefield group C streptococci (GCS), is a frequent cause of bovine mastitis. This highly prevalent disease is the costliest in dairy industry. Adherence and biofilm production are important factors in streptoccocal pathogenesis. We have previously described the adhesion and internalization of SDSD isolates in human cells and now we describe the biofilm production capability of this bacterium. In this work we integrated microbiology, imaging and computational methods to evaluate the biofilm production capability of SDSD isolates; to assess the presence of biofilm regulatory protein BrpA homolog in the biofilm producers; and to predict a structural model of BrpA-like protein and its binding to putative inhibitors. Our results show that SDSD isolates form biofilms on abiotic surface such as glass (hydrophilic) and polystyrene (hydrophobic), with the strongest biofilm formation observed in glass. This ability was mainly associated with a proteinaceous extracellular matrix, confirmed by the dispersion of the biofilms after proteinase K and trypsin treatment. The biofilm formation in SDSD isolates was also confirmed by confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). Under SEM observation, VSD16 isolate formed cell aggregates during biofilm growth while VSD9 and VSD10 formed smooth and filmy layers. We show that brpA-like gene is present and expressed in SDSD biofilm-producing isolates and its expression levels correlated with the biofilm production capability, being more expressed in the late exponential phase of planktonic growth compared to biofilm growth. Fisetin, a known biofilm inhibitor and a putative BrpA binding molecule, dramatically inhibited biofilm formation by the SDSD isolates but did not affect planktonic growth, at the tested concentrations. Homology modeling was used to predict the 3D structure of BrpA-like protein. Using high throughput virtual screening and molecular docking, we selected five ligand molecules with strong binding affinity to the hydrophobic cleft of the protein, making them potential inhibitor candidates of the SDSD BrpA-like protein. These results warrant further investigations for developing novel strategies for SDSD anti-biofilm therapy.


Assuntos
Antibacterianos/química , Proteínas de Bactérias/antagonistas & inibidores , Biofilmes/crescimento & desenvolvimento , Streptococcus/fisiologia , Animais , Antibacterianos/farmacologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes/efeitos dos fármacos , Matriz Extracelular de Substâncias Poliméricas/química , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Matriz Extracelular de Substâncias Poliméricas/ultraestrutura , Feminino , Flavonoides/química , Flavonoides/farmacologia , Flavonóis , Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Simulação de Acoplamento Molecular , Estrutura Molecular , Ligação Proteica , Conformação Proteica , Infecções Estreptocócicas/microbiologia , Streptococcus/efeitos dos fármacos , Streptococcus/genética , Streptococcus/metabolismo
15.
Sci Rep ; 8(1): 5313, 2018 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-29593310

RESUMO

Gram-positive bacteria homeostasis and antibiotic resistance mechanisms are dependent on the intricate architecture of the cell wall, where amidated peptidoglycan plays an important role. The amidation reaction is carried out by the bi-enzymatic complex MurT-GatD, for which biochemical and structural information is very scarce. In this work, we report the first crystal structure of the glutamine amidotransferase member of this complex, GatD from Staphylococcus aureus, at 1.85 Å resolution. A glutamine molecule is found close to the active site funnel, hydrogen-bonded to the conserved R128. In vitro functional studies using 1H-NMR spectroscopy showed that S. aureus MurT-GatD complex has glutaminase activity even in the absence of lipid II, the MurT substrate. In addition, we produced R128A, C94A and H189A mutants, which were totally inactive for glutamine deamidation, revealing their essential role in substrate sequestration and catalytic reaction. GatD from S. aureus and other pathogenic bacteria share high identity to enzymes involved in cobalamin biosynthesis, which can be grouped in a new sub-family of glutamine amidotransferases. Given the ubiquitous presence of GatD, these results provide significant insights into the molecular basis of the so far undisclosed amidation mechanism, contributing to the development of alternative therapeutics to fight infections.


Assuntos
Antranilato Sintase/metabolismo , Antranilato Sintase/ultraestrutura , Transferases de Grupos Nitrogenados/metabolismo , Transferases de Grupos Nitrogenados/ultraestrutura , Staphylococcus aureus/enzimologia , Antibacterianos/análise , Proteínas de Bactérias/análise , Carbono-Nitrogênio Ligases , Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida/metabolismo , Domínio Catalítico , Parede Celular/química , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Bactérias Gram-Positivas , Complexos Multienzimáticos , Peptidoglicano/química , Infecções Estafilocócicas , Staphylococcus aureus/metabolismo
16.
ACS Chem Biol ; 13(5): 1235-1242, 2018 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-29562136

RESUMO

Selective base pairing is the foundation of DNA recognition. Here, we elucidate the molecular and structural details of a FRET-based two-component molecular beacon relying on steady-state fluorescence spectroscopy, small-angle X-ray scattering (SAXS), microscale thermophoresis (MST), and differential electrophoretic mobility. This molecular beacon was designed to detect the most common fusion sequences causing chronic myeloid leukemia, e14a2 and e13a2. The emission spectra indicate that the self-assembly of the different components of the biosensor occurs sequentially, triggered by the fully complementary target. We further assessed the structural alterations leading to the specific fluorescence FRET signature by SAXS, MST, and the differential electrophoretic mobility, where the size range observed is consistent with hybridization and formation of a 1:1:1 complex for the probe in the presence of the complementary target and revelator. These results highlight the importance of different techniques to explore conformational DNA changes in solution and its potential to design and characterize molecular biosensors for genetic disease diagnosis.


Assuntos
Técnicas Biossensoriais , DNA de Neoplasias/química , Transferência Ressonante de Energia de Fluorescência/métodos , Proteínas de Fusão bcr-abl/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/diagnóstico , Espalhamento a Baixo Ângulo , Difração de Raios X/métodos , Cromossomos Humanos Par 22 , Cromossomos Humanos Par 9 , Eletroforese/métodos , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Conformação de Ácido Nucleico , Cromossomo Filadélfia
17.
J Inorg Biochem ; 180: 211-221, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29355752

RESUMO

Previous studies generally agree that in the blood serum vanadium is transported mainly by human serum transferrin (hTF). In this work through the combined use of electrochemical techniques, matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometry and small-angle X-ray scattering (SAXS) data it is confirmed that both VIV and VV bind to apo-hTF and holo-hTF. The electrochemical behavior of solutions containing vanadate(V) solutions at pH=7.0, analyzed by using two different voltammetric techniques, with different time windows, at a mercury electrode, Differential Pulse Polarography (DPP) and Cyclic Voltammetry (CV), is consistent with a stepwise reduction of VV→VIV and VIV→VII. Globally the voltammetric data are consistent with the formation of 2:1 complexes in the case of the system VV-apo-hTF and both 1:1 and 2:1 complexes in the case of VV-holo-hTF; the corresponding conditional formation constants were estimated. MALDI-TOF mass spectrometric data carried out with samples of VIVOSO4 and apo-hTF and of NH4VVO3 with both apo-hTF and holo-hTF with V:hTF ratios of 3:1 are consistent with the binding of vanadium to the proteins. Additionally the SAXS data suggest that both VIVOSO4 and NaVVO3 can effectively interact with human apo-transferrin, but for holo-hTF no clear evidence was obtained supporting the existence or the absence of protein-ligand interactions. This latter data suggest that the conformation of holo-hTF does not change in the presence of either VIVOSO4 or NH4VVO3. Therefore, it is anticipated that VIV or VV bound to holo-hTF may be efficiently up-taken by the cells through receptor-mediated endocytosis of hTF.


Assuntos
Técnicas Eletroquímicas/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Transferrina/metabolismo , Vanádio/metabolismo , Endocitose , Humanos , Conformação Molecular , Ligação Proteica , Espalhamento a Baixo Ângulo , Difração de Raios X
18.
Biochim Biophys Acta Bioenerg ; 1858(10): 865-872, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28801050

RESUMO

Arsenic is a widely distributed environmental toxin whose presence in drinking water poses a threat to >140 million people worldwide. The respiratory enzyme arsenite oxidase from various bacteria catalyses the oxidation of arsenite to arsenate and is being developed as a biosensor for arsenite. The arsenite oxidase from Rhizobium sp. str. NT-26 (a member of the Alphaproteobacteria) is a heterotetramer consisting of a large catalytic subunit (AioA), which contains a molybdenum centre and a 3Fe-4S cluster, and a small subunit (AioB) containing a Rieske 2Fe-2S cluster. Stopped-flow spectroscopy and isothermal titration calorimetry (ITC) have been used to better understand electron transfer through the redox-active centres of the enzyme, which is essential for biosensor development. Results show that oxidation of arsenite at the active site is extremely fast with a rate of >4000s-1 and reduction of the electron acceptor is rate-limiting. An AioB-F108A mutation results in increased activity with the artificial electron acceptor DCPIP and decreased activity with cytochrome c, which in the latter as demonstrated by ITC is not due to an effect on the protein-protein interaction but instead to an effect on electron transfer. These results provide further support that the AioB F108 is important in electron transfer between the Rieske subunit and cytochrome c and its absence in the arsenite oxidases from the Betaproteobacteria may explain the inability of these enzymes to use this electron acceptor.


Assuntos
Citocromos c/metabolismo , Transporte de Elétrons/fisiologia , Oxirredutases/metabolismo , Arsenitos/metabolismo , Betaproteobacteria/metabolismo , Catálise , Domínio Catalítico/fisiologia , Elétrons , Molibdênio/metabolismo , Oxirredução , Mapas de Interação de Proteínas/fisiologia , Subunidades Proteicas/metabolismo
19.
Sci Rep ; 7(1): 5798, 2017 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28724964

RESUMO

Molybdenum and tungsten are taken up by bacteria and archaea as their soluble oxyanions through high affinity transport systems belonging to the ATP-binding cassette (ABC) transporters. The component A (ModA/TupA) of these transporters is the first selection gate from which the cell differentiates between MoO42-, WO42- and other similar oxyanions. We report the biochemical characterization and the crystal structure of the apo-TupA from Desulfovibrio desulfuricans G20, at 1.4 Å resolution. Small Angle X-ray Scattering data suggests that the protein adopts a closed and more stable conformation upon ion binding. The role of the arginine 118 in the selectivity of the oxyanion was also investigated and three mutants were constructed: R118K, R118E and R118Q. Isothermal titration calorimetry clearly shows the relevance of this residue for metal discrimination and oxyanion binding. In this sense, the three variants lost the ability to coordinate molybdate and the R118K mutant keeps an extremely high affinity for tungstate. These results contribute to an understanding of the metal-protein interaction, making it a suitable candidate for a recognition element of a biosensor for tungsten detection.


Assuntos
Desulfovibrio desulfuricans/enzimologia , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Compostos de Tungstênio/metabolismo , Substituição de Aminoácidos , Calorimetria , Cristalografia por Raios X , Análise Mutacional de DNA , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/isolamento & purificação , Modelos Moleculares , Conformação Proteica , Especificidade por Substrato
20.
Chem Asian J ; 12(16): 2062-2084, 2017 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-28651041

RESUMO

[VO(acac)2 ] is a remarkable vanadium compound and has potential as a therapeutic drug. It is important to clarify how it is transported in blood, but the reports addressing its binding to serum proteins have been contradictory. We use several spectroscopic and mass spectrometric techniques (ESI and MALDI-TOF), small-angle X-ray scattering and size exclusion chromatography (SEC) to characterize solutions containing [VO(acac)2 ] and either human serum apotransferrin (apoHTF) or albumin (HSA). DFT and modeling protein calculations are carried out to disclose the type of binding to apoHTF. The measured circular dichroism spectra, SEC and MALDI-TOF data clearly prove that at least two VO-acac moieties may bind to apoHTF, most probably forming [VIV O(acac)(apoHTF)] complexes with residues of the HTF binding sites. No indication of binding of [VO(acac)2 ] to HSA is obtained. We conclude that VIV O-acac species may be transported in blood by transferrin. At very low complex concentrations speciation calculations suggest that [(VO)(apoHTF)] species form.


Assuntos
Ácido Ascórbico/análogos & derivados , Modelos Químicos , Compostos Organometálicos/metabolismo , Teoria Quântica , Albumina Sérica/metabolismo , Transferrina/metabolismo , Ácido Ascórbico/metabolismo , Dicroísmo Circular , Humanos , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...