Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Osteoporos Int ; 31(7): 1239-1250, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31965217

RESUMO

There is no objective way to monitor mechanical loading characteristics during exercise for bone health improvement. We developed accelerometry-based equations to predict ground reaction force (GRF) and loading rate (LR) in normal weight to severely obese subjects. Equations developed had a high and moderate accuracy for GRF and LR prediction, respectively, thereby representing an accessible way to determine mechanical loading characteristics in clinical settings. INTRODUCTION: There is no way to objectively prescribe and monitor exercise for bone health improvement in obese patients based on mechanical loading characteristics. We aimed to develop accelerometry-based equations to predict peak ground reaction forces (pGRFs) and peak loading rate (pLR) on normal weight to severely obese subjects. METHODS: Sixty-four subjects (45 females; 84.6 ± 21.7 kg) walked at different speeds (2-6 km·h-1) on a force plate-equipped treadmill while wearing accelerometers at lower back and hip. Regression equations were developed to predict pGRF and pLR from accelerometry data. Leave-one-out cross-validation was used to calculate prediction accuracy and Bland-Altman plots. Actual and predicted values at different speeds were compared by repeated measures ANOVA. RESULTS: Body mass and peak acceleration were included for pGRF prediction and body mass and peak acceleration transient rate for pLR prediction. All pGRF equation coefficients of determination were above 0.89, a good agreement between actual and predicted pGRFs, with a mean absolute percent error (MAPE) below 6.7%. No significant differences were observed between actual and predicted pGRFs at each walking speed. Accuracy indices from our equations were better than previously developed equations for normal weight subjects, namely a MAPE approximately 3 times smaller. All pLR prediction equations presented a lower accuracy compared to those developed to predict pGRF. CONCLUSION: Walking pGRF and pLR in normal weight to severely obese subjects can be predicted with moderate to high accuracy by accelerometry-based equations, representing an easy and accessible way to determine mechanical loading characteristics in clinical settings.


Assuntos
Acelerometria , Obesidade , Caminhada , Aceleração , Exercício Físico , Feminino , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...