Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Adv Radiat Oncol ; 9(3): 101409, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38298328

RESUMO

Purpose: Positional errors resulting from motion are a principal challenge across all disease sites in radiation therapy. This is particularly pertinent when treating lesions in the liver with stereotactic body radiation therapy (SBRT). To achieve dose escalation and margin reduction for liver SBRT, kV real-time imaging interventions may serve as a potential solution. In this study, we report results of a retrospective cohort of liver patients treated using real-time 2D kV-image guidance SBRT with emphasis on the impact of (1) clinical workflow, (2) treatment accuracy, and (3) tumor dose. Methods and Materials: Data from 33 patients treated with 41 courses of liver SBRT were analyzed. During treatment, planar kV images orthogonal to the treatment beam were acquired to determine treatment interventions, namely treatment pauses (ie, adequacy of gating thresholds) or treatment shifts. Patients were shifted if internal markers were >3 mm, corresponding to the PTV margin used, from the expected reference condition. The frequency, duration, and nature of treatment interventions (ie, pause vs shift) were recorded, and the dosimetric impact associated with treatment shifts was estimated using a machine learning dosimetric model. Results: Of all fractions delivered, 39% required intervention, which took on average 1.9 ± 1.6 minutes and occurred more frequently in treatments lasting longer than 7 minutes. The median realignment shift was 5.7 mm in size, and the effect of these shifts on minimum tumor dose in simulated clinical scenarios ranged from 0% to 50% of prescription dose per fraction. Conclusion: Real-time kV-based imaging interventions for liver SBRT minimally affect clinical workflow and dosimetrically benefit patients. This potential solution for addressing positional errors from motion addresses concerns about target accuracy and may enable safe dose escalation and margin reduction in the context of liver SBRT.

2.
Ultrason Imaging ; 45(4): 206-214, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37102708

RESUMO

Methods to assess ultrasound backscatter anisotropy from clinical array transducers have recently been developed. However, they do not provide information about the anisotropy of microstructural features of the specimens. This work develops a simple geometric model, referred to as the secant model, of backscatter coefficient anisotropy. Specifically, we evaluate anisotropy of the frequency dependence of the backscatter coefficient parameterized in terms of effective scatterer size. We assess the model in phantoms with known scattering sources and in a skeletal muscle, a well-known anisotropic tissue. We demonstrate that the secant model can determine the orientation of the anisotropic scatterers, as well as accurately determining effective scatterer sizes, and it may classify isotropic versus anisotropic scatterers. The secant model may find utility in monitoring disease progression as well as characterizing normal tissue architectures.


Assuntos
Músculo Esquelético , Transdutores , Anisotropia , Ultrassonografia/métodos , Músculo Esquelético/diagnóstico por imagem , Imagens de Fantasmas
3.
J Appl Clin Med Phys ; 22(10): 305-314, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34505354

RESUMO

PURPOSE: In STEM education and careers, underrepresented minorities (URMs) experience higher attrition than non-URM counterparts. Informal educational experiences, such as outreach, have been identified to increase URM awareness and enrollment in STEM. The objectives of this work were to (1) elucidate the current state of racial and ethnic diversity in medical physics and (2) provide a community-focused framework for building effective outreach programs geared toward K-12 URM students and their families. METHODS: Self-reported racial and ethnic identity data from the American Association of Physicists in Medicine (AAPM) members were obtained to identify the percentage of URM members. Outreach programming was developed for home or away events. Home events occurred at the University of Wisconsin-Madison Department of Medical Physics; away events occurred at public community institutions that served URM and economically disadvantaged populations. Demonstrations, hands-on activities, and presentations covered radiation detection, radiotherapy, medical imaging, and medical physics career paths. High school students were asked about their awareness of medical physics prior to outreach events. Likert-scale surveys evaluated student level of agreement (1 = Strongly disagree to 5 = Strongly agree) that home events increased their career interests in medicine and physics and interest in pursuing STEM coursework. RESULTS: Average percentage of AAPM URM members was 10.7% from 2014 to 2020. From 2016 to 2020, 42 outreach events occurred near or within the Madison metro area. Over 1900 individuals participated in outreach events, with 50 participants on average per event. The majority of home event participants indicated their interest in medical careers increased (65.4%) and were inspired to pursue more STEM courses (73.1%) after the program. CONCLUSIONS: Our medical physics outreach program demonstrates a means of increasing awareness and interest around medical physics, particularly for underrepresented individuals. This article addresses gaps in the literature for how to create and implement effective, community-focused medical physics outreach programs.


Assuntos
Grupos Minoritários , Radioterapia (Especialidade) , Humanos , Física , Estudantes , Estados Unidos , Universidades
4.
Ultrasound Med Biol ; 46(1): 149-155, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31668428

RESUMO

The cervix has two biomechanical functions: to remain closed while the fetus develops throughout pregnancy, and to open for delivery of the fetus at full term. This dual function is principally attributed to collagen within the extracellular matrix (ECM). However, recent evidence suggests that other ECM, and non-ECM, components play a role as well. One component is smooth muscle cells arranged circumferentially near the internal os. In this study, we investigate correlations between cervical smooth muscle cell force generation and the effective scatterer diameter (ESD), a quantitative ultrasound parameter directly related to the acoustic impedance distribution and, therefore, a potential biomarker of muscle contractility. Using whole cervical slices (N = 5), we determined significant positive correlations (quantified with Pearson's r) between muscle force generation and ESD immediately after administration of oxytocin (median r = 0.90). In summary, the ESD may prove a useful biomarker for studying structure and function of cervical smooth muscle in vivo.


Assuntos
Colo do Útero/diagnóstico por imagem , Colo do Útero/fisiologia , Músculo Liso/diagnóstico por imagem , Músculo Liso/fisiologia , Contração Uterina , Feminino , Humanos , Técnicas In Vitro , Ultrassonografia/métodos
5.
Ultrasound Med Biol ; 45(6): 1466-1474, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30979594

RESUMO

Clinical prediction and especially prevention of abnormal birth timing, particularly pre-term, is poor. The cervix plays a key role in birth timing; it first serves as a rigid barrier to protect the developing fetus, then becomes the pathway to delivery of that fetus. Imaging biomarkers to define this remodeling process could provide insights to improve prediction of birth timing and elucidate novel targets for preventive therapies. Quantitative ultrasound (QUS) approaches that appear promising for this purpose include shear wave speed (SWS) estimation to quantify softness, as well as parameters based on backscattered power, such as the mean backscattered power difference (mBSPD) and specific attenuation coefficient (SAC), to quantify the organization of tissue microstructure. Invasive studies in rodents demonstrated that as pregnancy advances, cervical microstructure disorganizes as tissue softness and compliance increase. Our non-invasive studies in pregnant women and rhesus macaques suggested that QUS can detect these microstructural changes in vivo. Our previous study in the same cohort showed a progressive decline in SWS during pregnancy, consistent with increasing tissue softness, and we hypothesized that backscatter parameters would also decrease, consistent with increasing microstructural disorganization. In this study, we analyzed the mBSPD and SAC in the cervices of rhesus macaques (n = 18). We found that both mBSPD and SAC decreased throughout pregnancy (p < 0.001 for both parameters) and that the former appears to be a more reliable biomarker. In summary, biomarkers that can characterize tissue microstructural organization are promising for comprehensive characterization of cervical remodeling in pregnancy.


Assuntos
Colo do Útero/diagnóstico por imagem , Macaca mulatta , Processamento de Sinais Assistido por Computador , Ultrassonografia/métodos , Animais , Biomarcadores , Estudos de Avaliação como Assunto , Feminino , Gravidez
6.
Phys Med Biol ; 63(8): 085016, 2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29517492

RESUMO

Abnormal parturition, e.g. pre- or post-term birth, is associated with maternal and neonatal morbidity and increased economic burden. This could potentially be prevented by accurate detection of abnormal softening of the uterine cervix. Shear wave elasticity imaging (SWEI) techniques that quantify tissue softness, such as shear wave speed (SWS) measurement, are promising for evaluation of the cervix. Still, interpretation of results can be complicated by biological variability (i.e. spatial variations of cervix stiffness, parity), as well as by experimental factors (i.e. type of transducer, posture during scanning). Here we investigated the ability of SWEI to detect cervical softening, as well as sources of SWS variability that can affect this task, in the pregnant and nonpregnant Rhesus macaque. Specifically, we evaluated SWS differences when imaging the cervix transabdominally with a typical linear array abdominal transducer, and transrectally with a prototype intracavitary linear array transducer. Linear mixed effects (LME) models were used to model SWS as a function of menstrual cycle day (in nonpregnant animals) and gestational age (in pregnant animals). Other variables included parity, shear wave direction, and cervix side (anterior versus posterior). In the nonpregnant cervix, the LME model indicated that SWS increased by 2% (95% confidence interval 0-3%) per day, starting eight days before menstruation. During pregnancy, SWS significantly decreased at a rate of 6% (95% CI 5-7%) per week (intracavitary approach) and 3% (95% CI 2-4%) per week (transabdominal approach), and interactions between the scanning approach and other fixed effects were also significant. These results suggest that, while absolute SWS values are influenced by factors such as scanning approach and SWEI implementation, these sources of variability do not compromise the sensitivity of SWEI to cervical softening. Our results also highlight the importance of standardizing SWEI approaches to improve their accuracy for cervical assessment.


Assuntos
Maturidade Cervical , Colo do Útero/diagnóstico por imagem , Técnicas de Imagem por Elasticidade/métodos , Animais , Elasticidade , Fenômenos Eletromagnéticos , Feminino , Idade Gestacional , Macaca mulatta , Modelos Animais , Gravidez , Prenhez , Som
7.
Radiat Oncol ; 11: 98, 2016 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-27473367

RESUMO

BACKGROUND: This study investigates the effect of gantry speed on 4DCBCT image quality and dose for the Varian On-Board Imager®. METHODS: A thoracic 4DCBCT protocol was designed using a 125 kVp spectrum. Image quality parameters were evaluated for 4DCBCT acquisition using Catphan® phantom with real-time position management™ system for gantry speeds varying between 1.0 to 6.0°/s. Superior-inferior motion of the phantom was executed using a sinusoidal waveform with five second period. Scans were retrospectively sorted into 4 phases (CBCT-4 ph) and 10 phases (CBCT-10 ph); average 4DCBCT (CBCT-ave), using all image data from the 4DCBCT acquisitions was also evaluated. The 4DCBCT images were evaluated using the following image quality metrics: spatial resolution, contrast-to-noise ratio (CNR), and uniformity index (UI). Additionally, Hounsfield unit (HU) sensitivity compared to a baseline CBCT and percent differences and RMS errors (RMSE) of excursion were also determined. Imaging dose was evaluated using an IBA CC13 ion chamber placed within CIRS Thorax phantom using the same sinusoidal motion and image acquisition settings as mentioned above. RESULTS: Spatial resolution decreased linearly from 5.93 to 3.82 lp/cm as gantry speed increased from 1.0 to 6.0°/s. CNR decreased linearly from 4.80 to 1.82 with gantry speed increasing from 1.0 to 6.0°/s, respectively. No noteworthy variations in UI, HU sensitivity, or excursion metrics were observed with changes in gantry speed. Ion chamber dose rates measured ranged from 2.30 (lung) to 5.18 (bone) E-3 cGy/mAs. CONCLUSIONS: A quantitative analysis of the Varian OBI's 4DCBCT capabilities was explored. Changing gantry speed changes the number of projections used for reconstruction, affecting both image quality and imaging dose if x-ray tube current is held constant. From the results of this study, a gantry speed between 2 and 3°/s was optimal when considering image quality, dose, and reconstruction time. The future of 4DCBCT clinical utility relies on further investigation of image acquisition and reconstruction optimization.


Assuntos
Tomografia Computadorizada de Feixe Cônico/métodos , Tomografia Computadorizada Quadridimensional/métodos , Processamento de Imagem Assistida por Computador/métodos , Imagens de Fantasmas , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Técnicas de Imagem de Sincronização Respiratória/métodos , Humanos , Respiração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...