Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 12(19)2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31574912

RESUMO

Self-assembled InN nanocolumns were grown at low temperatures by plasma-assisted molecular beam epitaxy with a high crystalline quality. The self-assembling procedure was carried out on AlN/Al layers on Si(111) substrates avoiding the masking process. The Al interlayer on the Si(111) substrate prevented the formation of amorphous SiN. We found that the growth mechanism at 400 ∘ C of InN nanocolumns started by a layer-layer (2D) nucleation, followed by the growth of 3D islands. This growth mechanism promoted the nanocolumn formation without strain. The nanocolumnar growth proceeded with cylindrical and conical shapes with heights between 250 and 380 nm. Detailed high-resolution transmission electron microscopy analysis showed that the InN nanocolumns have a hexagonal crystalline structure, free of dislocation and other defects. The analysis of the phonon modes also allowed us to identify the hexagonal structure of the nanocolumns. In addition, the photoluminescence spectrum showed an energy transition of 0.72 eV at 20 K for the InN nanocolumns, confirmed by photoreflectance spectroscopy.

2.
RSC Adv ; 9(60): 35197-35208, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-35530668

RESUMO

Herein, for the first time, we report the synthesis of quaternary Cu(In,Ga)Se2 microcrystals (CIGSe MCs) using a facile and economical one-pot heating-up method. The most important parameters such as reaction temperature and time were varied to study their influences on the structural, morphological, compositional and optical properties of the MCs. Based on the results, the formation of CIGSe was initiated from binary ß-CuSe and then converted into pure phase CIGSe by gradual incorporation of In3+ and Ga3+ ions into the ß-CuSe crystal lattice. As the reaction time increases, the band gap energy was increased from 1.10 to 1.28 eV, whereas the size of the crystals increased from 0.9 to 3.1 µm. Besides, large-scale synthesis of CIGSe MCs exhibited a high reaction yield of 90%. Furthermore, the CIGSe MCs dispersed in the ethanol was coated as thin films by a drop casting method, which showed the optimum carrier concentration, high mobility and low resistivity. Moreover, the photoconductivity of the CIGSe MC thin film was enhanced by three order magnitude in comparison with CIGSe NC thin films. The solar cells fabricated with CIGSe MCs showed the PCE of 0.59% which is 14.75 times higher than CIGSe NCs. These preliminary results confirmed the potential of CIGSe MCs as an active absorber layer in low-cost thin film solar cells.

3.
Phys Chem Chem Phys ; 20(42): 27082-27092, 2018 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-30328855

RESUMO

A fundamental understanding of the Ostwald ripening effect (ORE) during the mechanochemical synthesis of PbTe nanostructures is presented. The ripening process involves the coarsening of larger particles from those of smaller size; this phenomenon was systematically evaluated at different stages of milling by microscopy analyses (AFM, TEM, STEM and HRTEM). At the early stage of milling, smaller particles and quantum dots are eventually dissolved to lower the total energy assciated with their surfaces. The ripening process - during milling - involves short-range mass transfer among particles. HRTEM analyses allowed us to identify that coarsening occurs by thermo-mechanically activated cooperative mechanisms. The detachment of the atoms from smaller particles to form bigger ones plays a major role in the particle coarsening. It was found that the coarsening process was not limited to crystalline nanostructures; so grain boundaries, edge dislocations and boundaries among crystalline and amorphous phases also play an important role to determine how species migration contributes to generate coarse particles. Those serve as sites for inducing coarsening in an equivalent way as surfaces do. Secondary ion mass spectrometry and elemental chemical mapping (EDX-STEM) revealed that both the purity and the chemical homogeneity of the PbTe nanostructures are prominent features of this material. Additionally, a direct band gap enhancement (780 nm) compared to bulk PbTe (3859 nm) was detected. It occurred due to the quantum confinement effect, lattice imperfections and even surface properties of the nanostructures. It is important to point out that the whole optical behaviour of the PbTe nanostructures was dependent upon the embedded nanoparticles and quantum dots in the clusters and coarse particles ranging from 15 nm to 35 nm.

4.
Sci Rep ; 8(1): 5096, 2018 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-29572514

RESUMO

Currently, superparamagnetic functionalized systems of magnetite (Fe3O4) nanoparticles (NPs) are promising options for applications in hyperthermia therapy, drug delivery and diagnosis. Fe3O4 NPs below 20 nm have stable single domains (SSD), which can be oriented by magnetic field application. Dispersion of Fe3O4 NPs in silicon dioxide (SiO2) matrix allows local SSD response with uniaxial anisotropy and orientation to easy axis, 90° <001> or 180° <111>. A successful, easy methodology to produce Fe3O4 NPs (6-17 nm) has been used with the Stöber modification. NPs were embedded in amorphous and biocompatible SiO2 matrix by mechanical stirring in citrate and tetraethyl orthosilicate (TEOS). Fe3O4 NPs dispersion was sampled in the range of 2-12 h to observe the SiO2 matrix formation as time function. TEM characterization identified optimal conditions at 4 h stirring for separation of SSD Fe3O4 in SiO2 matrix. Low magnetization (Ms) of 0.001 emu and a coercivity (Hc) of 24.75 Oe indicate that the embedded SSD Fe3O4 in amorphous SiO2 reduces the Ms by a diamagnetic barrier. Magnetic force microscopy (MFM) showed SSD Fe3O4 of 1.2 nm on average embedded in SiO2 matrix with uniaxial anisotropy response according to Fe3+ and Fe2+ electron spin coupling and rotation by intrinsic Neél contribution.

6.
Phys Chem Chem Phys ; 19(2): 1526-1535, 2017 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-27990516

RESUMO

The impact of the surface reconstruction of the density distribution and photoluminescence of silicon quantum dots (QDs) embedded in a silicon oxide matrix (SiOx) has been studied. Annealing treatments carried out on the as-deposited samples provoked the effusion of hydrogen species. Moreover, depending on the surrounding density and coalescence of QDs, they resulted in a change in the average size of the particles depending on the initial local environment. The shift in the luminescence spectra all over the visible region (blue, green and red) shows a strong dependence on the resultant change in the size and/or the passivation environment of QDs. Density functional theoretical (DFT) calculations support this fact and explain the possible electronic transitions (HOMO-LUMO gap) involved. Passivation in the presence of oxygen species lowers the band gap of Si29 and Si35 nanoclusters up to 1.7 eV, whereas, surface passivation in the environment of hydrogen species increases the band gap up to 4.4 eV. These results show a good agreement with the quantum confinement model described in this work and explain the shift in the luminescence all over the visible region. The results reported here offer vital insight into the mechanism of emission from silicon quantum dots which has been one of the most debated topics in the last two decades. QDs with multiple size distribution in different local environments (band gap) observed in this work could be used for the fabrication of light emission diodes (LEDs) or shift-conversion thin films in third generation efficient tandem solar cells for the maximum absorption of the solar spectrum in different wavelength regions.

7.
J Nanosci Nanotechnol ; 6(7): 2103-9, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17025133

RESUMO

In this work a co-precipitation route was used to synthesise two yttria-stabilised-zirconia (YSZ) phases with different concentrations of alumina (Al2O3). A tetragonal, with 3 mol% yttria, and a cubic, with 8 mol% yttria, phases were added with alumina in different weight proportions, 90/10, 80/20, 70/30, and 60/40, respectively. After synthesised, products were sintered in a range 800-1100 degrees C for different intervals of time. Compounds were characterised by X-ray diffraction, transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), and atomic force microscopy (AFM). Rietveld refinements, using FULPROF-Suite software, were carried out to obtain the cell parameters and structural characterisation of products.


Assuntos
Óxido de Alumínio/química , Cristalização/métodos , Porcelana Dentária/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/métodos , Ítrio/química , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície , Zircônio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...