Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 575(7782): 390-394, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31618757

RESUMO

Heterochromatin affects genome function at many levels. It enables heritable gene repression, maintains chromosome integrity and provides mechanical rigidity to the nucleus1,2. These diverse functions are proposed to arise in part from compaction of the underlying chromatin2. A major type of heterochromatin contains at its core the complex formed between HP1 proteins and chromatin that is methylated on histone H3, lysine 9 (H3K9me). HP1 is proposed to use oligomerization to compact chromatin into phase-separated condensates3-6. Yet, how HP1-mediated phase separation relates to chromatin compaction remains unclear. Here we show that chromatin compaction by the Schizosaccharomyces pombe HP1 protein Swi6 results in phase-separated liquid condensates. Unexpectedly, we find that Swi6 substantially increases the accessibility and dynamics of buried histone residues within a nucleosome. Restraining these dynamics impairs compaction of chromatin into liquid droplets by Swi6. Our results indicate that Swi6 couples its oligomerization to the phase separation of chromatin by a counterintuitive mechanism, namely the dynamic exposure of buried nucleosomal regions. We propose that such reshaping of the octamer core by Swi6 increases opportunities for multivalent interactions between nucleosomes, thereby promoting phase separation. This mechanism may more generally drive chromatin organization beyond heterochromatin.


Assuntos
Montagem e Desmontagem da Cromatina , Proteínas Cromossômicas não Histona/metabolismo , Heterocromatina/química , Heterocromatina/metabolismo , Nucleossomos/química , Nucleossomos/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces , Proteínas Cromossômicas não Histona/química , Heterocromatina/genética , Histonas/química , Histonas/metabolismo , Modelos Moleculares , Schizosaccharomyces/química , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Solventes/química , Solventes/metabolismo
2.
Oncogene ; 32(45): 5261-71, 2013 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-23318434

RESUMO

The tyrosine kinase c-Abl (or Abl) and the prolyl-isomerase Pin1 cooperatively activate the transcription factor p73 by enhancing recruitment of the acetyltransferase p300. As the transcription factor c-Myc (or Myc) is a known target of Pin1 and p300, we hypothesized that it might be regulated in a similar manner. Consistent with this hypothesis, overexpression of Pin1 augmented the interaction of Myc with p300 and transcriptional activity. The action of Abl, however, was more complex than predicted. On one hand, Abl indirectly enhanced phosphorylation of Myc on Ser 62 and Thr 58, its association with Pin1 and p300 and its acetylation by p300. These effects of Abl were exerted through phosphorylation of substrate(s) other than Myc itself. On the other hand, Abl interacted with the C-terminal domain of Myc and phosphorylated up to five tyrosine residues in its N-terminus, the principal of which was Y74. Indirect immunofluorescence or immunohistochemical staining suggested that the Y74-phosphorylated form of Myc (Myc-pY74) localized to the cytoplasm and coexisted either with active Abl in a subset of mammary carcinomas or with Bcr-Abl in chronic myeloid leukemia. In all instances, Myc-pY74 constituted a minor fraction of the cellular Myc protein. Thus, our data unravel two potential effects of Abl on Myc: first, Abl signaling can indirectly augment acetylation of Myc by p300, and most likely also its transcriptional activity in the nucleus; second, Abl can directly phosphorylate Myc on tyrosine: the resulting form of Myc appears to be cytoplasmic, and its presence correlates with Abl activation in cancer.


Assuntos
Neoplasias da Mama/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Proteínas Proto-Oncogênicas c-abl/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Acetilação , Animais , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Proteína p300 Associada a E1A/metabolismo , Proteínas de Fusão bcr-abl/metabolismo , Células HEK293 , Células HeLa , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Camundongos , Peptidilprolil Isomerase de Interação com NIMA , Peptidilprolil Isomerase/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-abl/genética , Proteínas Proto-Oncogênicas c-myc/genética , Interferência de RNA , RNA Interferente Pequeno , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...