Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Clin Nutr ; 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424158

RESUMO

Iron deficiency is a recognized global health concern, particularly impactful during pregnancy where the mother serves as the primary source of iron for the developing fetus. Adequate maternal iron levels are crucial for fetal growth and cognitive development. This review investigates the correlation between maternal iron deficiency and cognitive impairment and anemia in offspring, considering age and gender differentials. PubMed, ScienceDirect, and Google Scholar databases were queried using keywords "maternal," "iron," "gender/sex," and "cognition." The review included studies on human and animal subjects where maternal iron deficiency was the exposure and offspring cognitive function and anemia were outcomes. Out of 1139 articles screened, fourteen met inclusion criteria. Twelve studies highlighted cognitive deficits in offspring of iron-deficient mothers, with females generally exhibiting milder impairment compared to males. Additionally, two studies noted increased anemia prevalence in offspring of iron-deficient mothers, particularly affecting males and younger individuals. The findings suggest that male offspring are at higher risk of both anemia and cognitive dysfunction during youth, while females face increased risks in adulthood. Thus, maternal iron deficiency elevates the likelihood of anemia and cognitive impairments in offspring, underscoring the importance of addressing maternal iron status for optimal child health.

2.
Biol Trace Elem Res ; 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38277121

RESUMO

Maternal nutrition, including the availability of micronutrients such as zinc, influences the health of the offspring. Using Drosophila melanogaster, we studied the impact of zinc deficiency on development and reproduction, as well as the effects of maternal zinc status on the offspring's expression of zinc transporters across F1 to F3 generations. Zinc deficiency was induced by adding N,N,N',N'-Tetrakis (2-pyridylmethyl)-ethylenediamine (TPEN) to the diet on which the eggs representing the F0 generation flies were laid. Then, virgin F0 females were mated with control males to produce F1, and subsequently thereafter to generate F2 and F3. Offspring from F1 to F3 were analyzed for body zinc status and zinc transporter mRNA levels. We found that zinc deficiency significantly (p < 0.05) impaired the development of flies, as evidenced by a reduced eclosion rate of zinc-deficient flies. Similarly, zinc deficiency significantly (p < 0.05) reduced the egg-laying rate in F0 flies, highlighting its impact on reproductive functions. Also, zinc levels were consistently lower in the F0 and persisted in subsequent generations for both male and female offspring, indicating transgenerational alterations in zinc status. Furthermore, gene expression analysis revealed significant (p < 0.05) variations in the mRNA levels of dZip42C.1, dZnT63C, dZip71B, and dZnT35C genes across different generations and between male and female offspring. These findings indicate gender-specific dynamics of gene expression in response to zinc deficiency, suggesting potential regulatory mechanisms involved in maintaining zinc homeostasis. Our study emphasizes the detrimental effects of zinc deficiency on development and reproduction in Drosophila and highlights potential implications for offspring and human health.

3.
Antioxidants (Basel) ; 13(1)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38247499

RESUMO

Quail egg yolk oil (QEYO) has a rich history of medicinal use, showcasing heightened antioxidant and bioactive properties in our prior studies. This positions QEYO as a promising candidate for therapeutic and cosmetic applications. In this investigation, QEYO was extracted using ethanol/chloroform and 2-propanol/hexane solvents. GC-MS and FTIR analyses quantified 14 major bioactive compounds in the ethanol/chloroform fraction and 12 in the 2-propanol/hexane fraction. Toxicity evaluations in fruit flies, spanning acute, sub chronic, and chronic exposures, revealed no adverse effects. Negative geotaxis assays assessed locomotor activity, while biochemical assays using fly hemolymph gauged antioxidant responses. Real-time PCR revealed the relative expression levels of the antioxidant and anti-inflammatory genes. FTIR spectra indicated diverse functional groups, and the GC-MS results associated bioactive compounds with the regulation of the anti-inflammatory genes EIGER and UPD2. While no significant change in SOD activities was noted, male flies treated with specific QEYO doses exhibited increased catalase activity and total antioxidant capacity, coupled with a significant decrease in their malondialdehyde levels. This study offers valuable insights into the bioactive compounds of QEYO and their potential regulatory roles in gene expression.

4.
Molecules ; 28(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36677591

RESUMO

Consumption of white rice (WR) has been shown to predispose individuals to metabolic disorders. However, brown rice (BR), which is relatively richer in bioactive compounds, possesses anti-glycaemic and antioxidant effects. In this study, fifteen cultivars of paddy rice that are predominantly consumed in North West Nigeria were analysed for their nutritional composition, bioactive contents and effects on metabolic outcomes in a fruit fly model. Gene expression analyses were conducted on the whole fly, targeting dPEPCK, dIRS, and dACC. The protein, carbohydrate, and fibre contents and bioactives of all BR cultivars were significantly different (p < 0.05) from the WR cultivars. Moreover, it was demonstrated that the glucose and trehalose levels were significantly higher (p < 0.05), while glycogen was significantly lower (p < 0.05) in the WR groups compared to the BR groups. Similarly, the expression of dACC and dPEPCK was upregulated, while that of dIRS was downregulated in the WR groups compared to the BR groups. Sex differences (p < 0.05) were observed in the WR groups in relation to the nutrigenomic effects. Our findings confirm metabolic perturbations in fruit flies following consumption of WR via distortion of insulin signalling and activation of glycogenolysis and gluconeogenesis. BR prevented these metabolic changes possibly due to its richer nutritional composition.


Assuntos
Doenças Metabólicas , Oryza , Glicemia/metabolismo , Insulina/metabolismo , Nutrigenômica , Oryza/química , Drosophila , Animais
5.
Front Aging Neurosci ; 14: 742408, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35431894

RESUMO

Alzheimer's disease (AD) is an irreversible brain disorder associated with slow, progressive loss of brain functions mostly in older people. The disease processes start years before the symptoms are manifested at which point most therapies may not be as effective. In the hippocampus, the key proteins involved in the JAK2/STAT3 signaling pathway, such as p-JAK2-Tyr1007 and p-STAT3-Tyr705 were found to be elevated in various models of AD. In addition to neurons, glial cells such as astrocytes also play a crucial role in the progression of AD. Without having a significant effect on tau and amyloid pathologies, the JAK2/STAT3 pathway in reactive astrocytes exhibits a behavioral impact in the experimental models of AD. Cholinergic atrophy in AD has been traced to a trophic failure in the NGF metabolic pathway, which is essential for the survival and maintenance of basal forebrain cholinergic neurons (BFCN). In AD, there is an alteration in the conversion of the proNGF to mature NGF (mNGF), in addition to an increase in degradation of the biologically active mNGF. Thus, the application of exogenous mNGF in experimental studies was shown to improve the recovery of atrophic BFCN. Furthermore, it is now coming to light that the FGF7/FGFR2/PI3K/Akt signaling pathway mediated by microRNA-107 is also involved in AD pathogenesis. Vascular dysfunction has long been associated with cognitive decline and increased risk of AD. Vascular risk factors are associated with higher tau and cerebral beta-amyloid (Aß) burden, while synergistically acting with Aß to induce cognitive decline. The apolipoprotein E4 polymorphism is not just one of the vascular risk factors, but also the most prevalent genetic risk factor of AD. More recently, the research focus on AD shifted toward metabolisms of various neurotransmitters, major and minor nutrients, thus giving rise to metabolomics, the most important "omics" tool for the diagnosis and prognosis of neurodegenerative diseases based on an individual's metabolome. This review will therefore proffer a better understanding of novel signaling pathways associated with neural and glial mechanisms involved in AD, elaborate potential links between vascular dysfunction and AD, and recent developments in "omics"-based biomarkers in AD.

6.
J Trace Elem Med Biol ; 65: 126731, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33610057

RESUMO

BACKGROUND: Zinc deficiency is associated with adverse effects on maternal health and pregnancy outcomes. These consequences have been reported over the years from zinc supplementation trials and observational studies whereby outcomes of maternal, foetal and infant health were measured. Owing to the importance of zinc in the functions of epigenetic enzymes, pre-clinical studies have shown that its deficiency could disrupt biological activities that involve epigenetic mechanisms in offspring. Thus, this review assessed the link between epigenetics and the effects of maternal zinc deficiency on the offspring's health in animal studies. METHODS: Research articles were retrieved without date restriction from PubMed, Web of Science, ScienceDirect, and Google Scholar databases, as well as reference lists of relevant articles. The search terms used were "zinc deficiency", "maternal zinc deficiency", "epigenetics", and "offspring." Six studies met the eligibility criteria and were reviewed. RESULTS: All the eligible studies reported maternal zinc deficiency and observed changes in epigenetic markers on the progeny during prenatal and postnatal stages of development. The main epigenetic markers reported were global and gene specific methylation and/ or acetylation. The epigenetic changes led to mortality, disruption in development, and risk of later life diseases. CONCLUSION: Maternal zinc deficiency is associated with epigenetic modifications in offspring, which induce pathologies and increase the risk of later life diseases. More research and insight into the epigenetic mechanisms could spring up new approaches to combat the associated disease conditions.


Assuntos
Epigênese Genética/genética , Desenvolvimento Fetal/genética , Zinco/metabolismo , Animais , Humanos , Zinco/deficiência
7.
Artigo em Inglês | MEDLINE | ID: mdl-32549177

RESUMO

Background Due to increasing prevalence of diabetes and associated endothelial dysfunction, this study was carried out to investigate the effects of co-administration of adrenoceptor blockers (prazosin and propranolol) and glibenclamide on plasma biomarkers of endothelial functions in diabetic rats. Methods Experiments were carried out on 35 male Wistar rats (170-200 g). They were divided into seven groups (n=5) as follows: normal control, diabetic control, diabetic + glibenclamide (GLB-5mg/kg/day), diabetic+ prazosin (PRZ-0.5 mg/kg/day), diabetic + PRZ + GLB, diabetic + propranolol (PRP-10 mg/kg/day), diabetes + PRP + GLB. Experimental diabetes was induced with streptozotocin (60 mg/kg) and drugs were administered orally for 3 weeks. Blood pressure was measured and animals were sacrificed afterwards. Blood samples were collected by cardiac puncture, and major marker of endothelial functions, nitric oxide derivatives (NOx), as well as superoxide dismutase (SOD) and malondialdehyde (MDA) were measured on the plasma. The aorta was harvested for histological examination. Data were subjected to descriptive statistics and analysed using ANOVA at α 0.05. Results There was a significant increase in levels of NOx and SOD, and a decrease in MDA level in diabetic treated groups compared to diabetic control. Mean blood pressure increased in diabetic control and diabetic + GLB group when compared with normal control, while it was mildly reduced in diabetic group treated with PRZ and PRP, and co-administered GLB. More so, Aorta histology was altered in diabetic control groups when compared with normal control and all diabetic treated groups. Conclusions Results from this study suggest that PRZ, PRP, and GLB (singly and in combined therapy) could have a restorative effect on endothelial functions in diabetes.

8.
J Basic Clin Physiol Pharmacol ; 29(4): 411-416, 2018 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-29634481

RESUMO

Background This study was carried out to investigate the effects of acetone extract of Cola nitida on brain Na+/K+-ATPase activity and spatial memory of healthy and streptozotocin (STZ)-induced diabetic female Wistar rats. Methods Forty-two female Wistar rats were used for this study and were randomly distributed into six groups (n=7). Rats in group 1 were used as control and were administered normal saline; group 2 rats were healthy rats administered 50 mg/kg of kola nut extract per day; group 3 rats were healthy rats administered 100 mg/kg of kola nut extract per day; group 4 rats were a diabetic group also administered normal saline; group 5 rats were diabetic rats administered 50 mg/kg of kola nut extract per day; and group 6 rats were diabetic rats administered 100 mg/kg of kola nut extract per day. Diabetes was induced with 50 mg/kg of STZ. After 3 weeks of administration, the spatial memories of the rats were tested using the Y-maze, followed by assay of Na+/K+-ATPase activity. Results The result shows a significant increase in Na+/K+-ATPase activity of diabetic treated groups (5 and 6) when compared with the diabetic group (4) and a significant increase in Na+/K+-ATPase activity of healthy treated groups (2 and 3) when compared with control. Also, there was a significant increase in spatial memory of the diabetic treated groups when compared with diabetic group. Conclusions This study revealed that kola nut extract has restorative effect on brain Na+/K+-ATPase activities and spatial memory of STZ-induced diabetic female Wistar rats.


Assuntos
Encéfalo/efeitos dos fármacos , Cola/química , Diabetes Mellitus Experimental/metabolismo , Extratos Vegetais/farmacologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Memória Espacial/efeitos dos fármacos , Acetona/química , Animais , Encéfalo/metabolismo , Diabetes Mellitus Experimental/induzido quimicamente , Feminino , Ratos , Ratos Wistar , Estreptozocina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...