Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1120012, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36968369

RESUMO

The bromodomain-containing proteins (BRD-proteins) belongs to family of 'epigenetic mark readers', integral to epigenetic regulation. The BRD-members contain a conserved 'bromodomain' (BRD/BRD-fold: interacts with acetylated-lysine in histones), and several additional domains, making them structurally/functionally diverse. Like animals, plants also contain multiple Brd-homologs, however the extent of their diversity and impact of molecular events (genomic duplications, alternative splicing, AS) therein, is relatively less explored. The present genome-wide analysis of Brd-gene families of Arabidopsis thaliana and Oryza sativa showed extensive diversity in structure of genes/proteins, regulatory elements, expression pattern, domains/motifs, and the bromodomain (w.r.t. length, sequence, location) among the Brd-members. Orthology analysis identified thirteen ortholog groups (OGs), three paralog groups (PGs) and four singleton members (STs). While more than 40% Brd-genes were affected by genomic duplication events in both plants, AS-events affected 60% A. thaliana and 41% O. sativa genes. These molecular events affected various regions (promoters, untranslated regions, exons) of different Brd-members with potential impact on expression and/or structure-function characteristics. RNA-Seq data analysis indicated differences in tissue-specificity and stress response of Brd-members. Analysis by RT-qPCR revealed differential abundance and salt stress response of duplicate A. thaliana and O. sativa Brd-genes. Further analysis of AtBrd gene, AtBrdPG1b showed salinity-induced modulation of splicing pattern. Bromodomain (BRD)-region based phylogenetic analysis placed the A. thaliana and O. sativa homologs into clusters/sub-clusters, mostly consistent with ortholog/paralog groups. The bromodomain-region displayed several conserved signatures in key BRD-fold elements (α-helices, loops), along with variations (1-20 sites) and indels among the BRD-duplicates. Homology modeling and superposition identified structural variations in BRD-folds of divergent and duplicate BRD-members, which might affect their interaction with the chromatin histones, and associated functions. The study also showed contribution of various duplication events in Brd-gene family expansion among diverse plants, including several monocot and dicot plant species.

2.
Front Plant Sci ; 13: 864330, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35707617

RESUMO

Superoxide dismutases (SODs, EC 1.15.1.1) are ubiquitous antioxidant metalloenzymes important for oxidative stress tolerance and cellular redox environment. Multiple factors have contributed toward the origin and diversity of SOD isoforms among different organisms. In plants, the genome duplication events, responsible for the generation of multiple gene copies/gene families, have also contributed toward the SOD diversity. However, the importance of such molecular events on the characteristics of SODs has not been studied well. This study investigated the effects of divergence on important characteristics of two block-duplicated rice cytosolic CuZn SODs (OsCSD1, OsCSD4), along with in silico assessment of similar events in other plants. The analysis revealed heterogeneity in gene length, regulatory regions, untranslated regions (UTRs), and coding regions of two OsCSDs. An inconsistency in the database-predicted OsCSD1 gene structure was also identified and validated experimentally. Transcript analysis showed differences in the basal levels and stress responsiveness of OsCSD1 and OsCSD4, and indicated the presence of two transcription start sites in the OsCSD1. At the amino acid level, the two OsCSDs showed differences at 18 sites; however, both exist as a homodimer, displaying typical CuZn SOD characteristics, and enhancing the oxidative stress tolerance of Escherichia coli cells. However, OsCSD4 showed higher specific activity as well as stability. The comparison of the two OsCSDs with reported thermostable CSDs from other plants identified regions likely to be associated with stability, while the homology modeling and superposition highlighted structural differences. The two OsCSDs displayed heteromeric interaction capability and forms an enzymatically active heterodimer (OsCSD1:OsCSD4) on co-expression, which may have significance as both are cytosolic. In silico analysis of 74 plant genomes revealed the prevalence of block duplications for multiple CSD copies (mostly cytosolic). The divergence and clustering analysis of CSDs suggested the possibility of an ancestral duplication event in monocots. Conserved SOD features indicating retention of SOD function among CSD duplicates were evident in few monocots and dicots. In most other species, the CSD copies lacked critical features and may not harbor SOD function; however, other feature-associated functions or novel functions might be present. These aspects of divergent CSD copies encoding co-localized CSDs may have implications in plant SOD functions in the cytosol and other organelles.

3.
PLoS One ; 14(11): e0224572, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31689318

RESUMO

Sequence tagged microsatellite site (STMS) are useful PCR based DNA markers. Wide genome coverage, high polymorphic index and co-dominant nature make STMS a preferred choice for marker assisted selection (MAS), genetic diversity analysis, linkage mapping, seed genetic purity analysis etc. Routine STMS analysis involving low-throughput, laborious and time-consuming polyacrylamide/agarose gels often limit their full utility in crop breeding experiments that involve large populations. Therefore, convenient, gel-less marker detection methods are highly desirable for STMS markers. The present study demonstrated the utility of SYBR Green dye based melt-profiling as a simple and convenient gel-less approach for detection of STMS markers (referred to as GLADS) in bread wheat and rice. The method involves use of SYBR Green dye during PCR amplification (or post-PCR) of STMS markers followed by generation of a melt-profile using controlled temperature ramp rate. The STMS amplicons yielded characteristic melt-profiles with differences in melting temperature (Tm) and profile shape. These characteristic features enabled melt-profile based detection and differentiation of STMS markers/alleles in a gel-less manner. The melt-profile approach allowed assessment of the specificity of the PCR assay unlike the end-point signal detection assays. The method also allowed multiplexing of two STMS markers with non-overlapping melt-profiles. In principle, the approach can be effectively used in any crop for STMS marker analysis. This SYBR Green melt-profiling based GLADS approach offers a convenient, low-cost (20-51%) and time-saving alternative for STMS marker detection that can reduce dependence on gel-based detection, and exposure to toxic chemicals.


Assuntos
Repetições de Microssatélites/genética , Oryza/genética , Melhoramento Vegetal/métodos , Sitios de Sequências Rotuladas , Triticum/genética , Alelos , Marcadores Genéticos/genética , Reação em Cadeia da Polimerase/métodos
4.
Biochem J ; 475(19): 3105-3121, 2018 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-30181146

RESUMO

Superoxide dismutases (SODs, EC 1.15.1.1) belong to an important group of antioxidant metalloenzymes. Multiple SODs exist for scavenging of reactive oxygen species (ROS) in different cellular compartments to maintain an intricate ROS balance. The present study deals with molecular and biochemical characterization of CuZn SOD encoded by LOC_Os03g11960 (referred to as OsCSD3), which is the least studied among the four rice isozymes. The OsCSD3 showed higher similarity to peroxisomal SODs in plants. The OsCSD3 transcript was up-regulated in response to salinity, drought, and oxidative stress. Full-length cDNA encoding OsCSD3 was cloned and expressed in Escherichia coli and analyzed for spectral characteristics. UV (ultraviolet)-visible spectroscopic analysis showed evidences of d-d transitions, while circular dichroism analysis indicated high ß-sheet content in the protein. The OsCSD3 existed as homodimer (∼36 kDa) with both Cu2+ and Zn2+ metal cofactors and was substantially active over a wide pH range (7.0-10.8), with optimum pH of 9.0. The enzyme was sensitive to diethyldithiocarbamate but insensitive to sodium azide, which are the characteristics features of CuZn SODs. The enzyme also exhibited bicarbonate-dependent peroxidase activity. Unlike several other known CuZn SODs, OsCSD3 showed higher tolerance to hydrogen peroxide and thermal inactivation. Heterologous overexpression of OsCSD3 enhanced tolerance of E. coli sod double-knockout (ΔsodA ΔsodB) mutant and wild-type strain against methyl viologen-induced oxidative stress, indicating the in vivo function of this enzyme. The results show that the locus LOC_Os03g11960 of rice encodes a functional CuZn SOD with biochemical characteristics similar to the peroxisomal isozymes.


Assuntos
Oryza/enzimologia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Superóxido Dismutase-1/química , Superóxido Dismutase-1/metabolismo , Peróxido de Hidrogênio/toxicidade , Oryza/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Proteínas de Plantas/isolamento & purificação , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase-1/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...