Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 124(4): 043902, 2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32058792

RESUMO

Time-varying metasurfaces are emerging as a powerful instrument for the dynamical control of the electromagnetic properties of a propagating wave. Here we demonstrate an efficient time-varying metasurface based on plasmonic nano-antennas strongly coupled to an epsilon-near-zero (ENZ) deeply subwavelength film. The plasmonic resonance of the metal resonators strongly interacts with the optical ENZ modes, providing a Rabi level spitting of ∼30%. Optical pumping at frequency ω induces a nonlinear polarization oscillating at 2ω responsible for an efficient generation of a phase conjugate and a negative refracted beam with a conversion efficiency that is more than 4 orders of magnitude greater compared to the bare ENZ film. The introduction of a strongly coupled plasmonic system therefore provides a simple and effective route towards the implementation of ENZ physics at the nanoscale.

2.
Nat Commun ; 10(1): 5119, 2019 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-31712619

RESUMO

Unique structural and optical properties of atomically thin two-dimensional semiconducting transition metal dichalcogenides enable in principle their efficient coupling to photonic cavities having the optical mode volume close to or below the diffraction limit. Recently, it has become possible to make all-dielectric nano-cavities with reduced mode volumes and negligible non-radiative losses. Here, we realise low-loss high-refractive-index dielectric gallium phosphide (GaP) nano-antennas with small mode volumes coupled to atomic mono- and bilayers of WSe[Formula: see text]. We observe a photoluminescence enhancement exceeding 10[Formula: see text] compared with WSe[Formula: see text] placed on planar GaP, and trace its origin to a combination of enhancement of the spontaneous emission rate, favourable modification of the photoluminescence directionality and enhanced optical excitation efficiency. A further effect of the coupling is observed in the photoluminescence polarisation dependence and in the Raman scattering signal enhancement exceeding 10[Formula: see text]. Our findings reveal dielectric nano-antennas as a promising platform for engineering light-matter coupling in two-dimensional semiconductors.

3.
Opt Express ; 23(22): 28108-18, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26561082

RESUMO

Plasmonic antennas integrated on silicon devices have large and yet unexplored potential for controlling and routing light signals. Here, we present theoretical calculations of a hybrid silicon-metallic system in which a single gold nanoantenna embedded in a single-mode silicon waveguide acts as a resonance-driven filter. As a consequence of scattering and interference, when the resonance condition of the antenna is met, the transmission drops by 85% in the resonant frequency band. Firstly, we study analytically the interaction between the propagating mode and the antenna by including radiative corrections to the scattering process and the polarization of the waveguide walls. Secondly, we find the configuration of maximum interaction and numerically simulate a realistic nanoantenna in a silicon waveguide. The numerical calculations show a large suppression of transmission and three times more scattering than absorption, consequent with the analytical model. The system we propose can be easily fabricated by standard silicon and plasmonic lithographic methods, making it promising as real component in future optoelectronic circuits.

4.
Nat Mater ; 11(9): 781-7, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22902895

RESUMO

Numerous optical technologies and quantum optical devices rely on the controlled coupling of a local emitter to its photonic environment, which is governed by the local density of optical states (LDOS). Although precise knowledge of the LDOS is crucial, classical optical techniques fail to measure it in all of its frequency and spatial components. Here, we use a scanning electron beam as a point source to probe the LDOS. Through angular and spectral detection of the electron-induced light emission, we spatially and spectrally resolve the light wave vector and determine the LDOS of Bloch modes in a photonic crystal membrane at an unprecedented deep-subwavelength resolution (30-40 nm) over a large spectral range. We present a first look inside photonic crystal cavities revealing subwavelength details of the resonant modes. Our results provide direct guidelines for the optimum location of emitters to control their emission, and key fundamental insights into light-matter coupling at the nanoscale.

5.
Phys Rev Lett ; 106(16): 163902, 2011 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-21599367

RESUMO

In this Letter, we study the Purcell effect in a 3D disordered dielectric medium through fluorescence decay rates of nanosized light sources. We report distributions of Purcell factor with non-Gaussian long-tailed statistics and an enhancement of up to 8 times the average value. We attribute this large enhancement to strong fluctuations of the local density of states induced by near-field scattering sustained by more than one particle. Our findings go beyond standard diagrammatic and single-scattering models and can be explained only by taking into account the full near-field interaction.

6.
Phys Rev Lett ; 99(23): 233902, 2007 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-18233364

RESUMO

In this Letter we demonstrate Mie resonances mediated transport of light in randomly arranged, monodisperse dielectric spheres packed at high filling fractions. By means of both static and dynamic optical experiments we show resonant behavior in the key transport parameters and, in particular, we find that the energy transport velocity, which is lower than the group velocity, also displays a resonant behavior.

7.
Phys Rev E Stat Nonlin Soft Matter Phys ; 74(3 Pt 2): 035602, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17025699

RESUMO

We present the experimental observation of multiple resonance transport of light waves, due to necklace states, in disordered one-dimensional systems. Transmission phase measurements allow us to identify these states unambiguously and investigate their statistical properties. A theoretical model is developed to describe the resonance statistics and the frequency dependance of the localization length.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...