Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Clin Transl Oncol ; 17(7): 511-20, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25532485

RESUMO

INTRODUCTION: In the mammary gland, the involution that occurs when lactation ends is an important period for cancer development. We have previously demonstrated stromal-epithelium interactions evaluating conditioned medium of adipose tissue on breast epithelial metalloproteases activity (Creydt et al., Clin Transl Oncol 15:124-131, 2013). Here, we evaluated the effects of conditioned medium of breast epithelial mammary cells on stromal cells. MATERIALS AND METHODS: Conditioned medium from normal murine mammary gland cell line (NMuMG) and conditioned medium proteins were obtained. Then, they were evaluated on modulation of adipocyte differentiation, using 3T3-L1 cell line. RESULTS: We described, for the first time, that breast epithelial mammary cells could produce the enzyme galactose 3-O-sulfotransferase 2 (GAL3ST2). Importantly, GAL3ST2 is present in NMMuMG and two human breast cancer cell lines, and it is more strongly expressed in more metastatic tumors. When 3T3-L1 preadipocyte differentiation was triggered in the presence of conditioned medium from NMuMG or GAL3ST2, triglyceride accumulation was decreased by 40 % and C/EBPß expression by 80 % in adipocytes. In addition, the expression of FABP4 (aP2), another marker of adipocyte differentiation, was inhibited by 40 % in GAL3ST2-treated cells. CONCLUSIONS: Taken together, these results suggest that GAL3ST2 would interfere with normal differentiation of 3T3-L1 preadipocytes; raising the possibility that it may affect normal differentiation of stromal preadipocytes and be a link to tumor metastatic capacity.


Assuntos
Adipócitos/metabolismo , Adipogenia , Glândulas Mamárias Animais/metabolismo , Sulfotransferases/metabolismo , Sulfurtransferases/metabolismo , Células 3T3-L1 , Adipócitos/citologia , Animais , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Diferenciação Celular , Linhagem Celular Tumoral , Proteínas de Ligação a Ácido Graxo/metabolismo , Feminino , Células HEK293 , Humanos , Células MCF-7 , Glândulas Mamárias Animais/citologia , Camundongos , Células NIH 3T3 , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Triglicerídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA