Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Insects ; 15(3)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38535355

RESUMO

The European corn borer (Ostrinia nubilalis, Hübner) has been managed successfully in North America since 1996 with transgenic Bt-corn. However, field-evolved resistance to all four available insecticidal Bt proteins has been detected in four provinces of Canada since 2018. Evidence suggests resistance may be spreading and evolving independently in scattered hotspots. Evolution and spread of resistance are functions of gene flow, and therefore dispersal, so design of effective resistance management and mitigation plans must take insect movement into account. Recent advances in characterizing European corn borer movement ecology have revealed a number of surprises, chief among them that a large percentage of adults disperse from the natal field via true migratory behavior, most before mating. This undermines a number of common key assumptions about adult behavior, patterns of movement, and gene flow, and stresses the need to reassess how ecological data are interpreted and how movement in models should be parameterized. While many questions remain concerning adult European corn borer movement ecology, the information currently available is coherent enough to construct a generalized framework useful for estimating the spatial scale required to implement possible Bt-resistance prevention, remediation, and mitigation strategies, and to assess their realistic chances of success.

2.
Insects ; 14(12)2023 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-38132596

RESUMO

Movement of adult western corn rootworm, Diabrotica virgifera virgifera LeConte, is of fundamental importance to this species' population dynamics, ecology, evolution, and interactions with its environment, including cultivated cornfields. Realistic parameterization of dispersal components of models is needed to predict rates of range expansion, development, and spread of resistance to control measures and improve pest and resistance management strategies. However, a coherent understanding of western corn rootworm movement ecology has remained elusive because of conflicting evidence for both short- and long-distance lifetime dispersal, a type of dilemma observed in many species called Reid's paradox. Attempts to resolve this paradox using population genetic strategies to estimate rates of gene flow over space likewise imply greater dispersal distances than direct observations of short-range movement suggest, a dilemma called Slatkin's paradox. Based on the wide-array of available evidence, we present a conceptual model of adult western corn rootworm movement ecology under the premise it is a partially migratory species. We propose that rootworm populations consist of two behavioral phenotypes, resident and migrant. Both engage in local, appetitive flights, but only the migrant phenotype also makes non-appetitive migratory flights, resulting in observed patterns of bimodal dispersal distances and resolution of Reid's and Slatkin's paradoxes.

3.
BMC Genomics ; 24(1): 19, 2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36639634

RESUMO

BACKGROUND: Adaptations by arthropod pests to host plant defenses of crops determine their impacts on agricultural production. The larval host range of western corn rootworm, Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae), is restricted to maize and a few grasses. Resistance of D. v. virgifera to crop rotation practices and multiple insecticides contributes to its status as the most damaging pest of cultivated maize in North America and Europe. The extent to which adaptations by this pest contributes to host plant specialization remains unknown. RESULTS: A 2.42 Gb draft D. v. virgifera genome, Dvir_v2.0, was assembled from short shotgun reads and scaffolded using long-insert mate-pair, transcriptome and linked read data. K-mer analysis predicted a repeat content of ≥ 61.5%. Ortholog assignments for Dvir_2.0 RefSeq models predict a greater number of species-specific gene duplications, including expansions in ATP binding cassette transporter and chemosensory gene families, than in other Coleoptera. A majority of annotated D. v. virgifera cytochrome P450s belong to CYP4, 6, and 9 clades. A total of 5,404 transcripts were differentially-expressed between D. v. virgifera larvae fed maize roots compared to alternative host (Miscanthus), a marginal host (Panicum virgatum), a poor host (Sorghum bicolor) and starvation treatments; Among differentially-expressed transcripts, 1,908 were shared across treatments and the least number were between Miscanthus compared to maize. Differentially-expressed transcripts were enriched for putative spliceosome, proteosome, and intracellular transport functions. General stress pathway functions were unique and enriched among up-regulated transcripts in marginal host, poor host, and starvation responses compared to responses on primary (maize) and alternate hosts. CONCLUSIONS: Manual annotation of D. v. virgifera Dvir_2.0 RefSeq models predicted expansion of paralogs with gene families putatively involved in insecticide resistance and chemosensory perception. Our study also suggests that adaptations of D. v. virgifera larvae to feeding on an alternate host plant invoke fewer transcriptional changes compared to marginal or poor hosts. The shared up-regulation of stress response pathways between marginal host and poor host, and starvation treatments may reflect nutrient deprivation. This study provides insight into transcriptomic responses of larval feeding on different host plants and resources for genomic research on this economically significant pest of maize.


Assuntos
Besouros , Inseticidas , Animais , Zea mays/fisiologia , Besouros/genética , Larva/metabolismo , Poaceae/genética , Inseticidas/metabolismo , Controle Biológico de Vetores , Plantas Geneticamente Modificadas/genética , Endotoxinas
4.
Cell Rep ; 41(12): 111843, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36543122

RESUMO

The oriental armyworm, Mythimna separata, is known for its long-distance seasonal migration and environment-dependent phase polymorphisms. Here, we present a chromosome-level genome reference and integrate multi-omics, functional genetics, and behavioral assays to explore the genetic bases of the hallmark traits of M. separata migration. Gene family comparisons show expansion of gustatory receptor genes in this cereal crop pest. Functional investigation of magnetoreception-related genes and associated flight behaviors suggest that M. separata may use the geomagnetic field to guide orientation in its nocturnal flight. Comparative transcriptome characterizes a suite of genes that may confer the observed plasticity between phases, including genes involved in protein processing, hormone regulation, and dopamine metabolism. We further report molecular signatures that underlie the dynamic regulation of a migratory syndrome coordinating reproduction and flight. Our study yields insights into environment-dependent developmental plasticity in moths and advances our understanding of long-distance migration in nocturnal insect pests.


Assuntos
Mariposas , Animais , Spodoptera/genética , Mariposas/genética , Transcriptoma , Receptores de Superfície Celular/genética
5.
Bioscience ; 72(12): 1176-1203, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36451972

RESUMO

The North American monarch butterfly (Danaus plexippus) is a candidate species for listing under the Endangered Species Act. Multiple factors are associated with the decline in the eastern population, including the loss of breeding and foraging habitat and pesticide use. Establishing habitat in agricultural landscapes of the North Central region of the United States is critical to increasing reproduction during the summer. We integrated spatially explicit modeling with empirical movement ecology and pesticide toxicology studies to simulate population outcomes for different habitat establishment scenarios. Because of their mobility, we conclude that breeding monarchs in the North Central states should be resilient to pesticide use and habitat fragmentation. Consequently, we predict that adult monarch recruitment can be enhanced even if new habitat is established near pesticide-treated crop fields. Our research has improved the understanding of monarch population dynamics at the landscape scale by examining the interactions among monarch movement ecology, habitat fragmentation, and pesticide use.

6.
Front Microbiol ; 13: 898744, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35722352

RESUMO

Microbial communities associated with animals vary based on both intrinsic and extrinsic factors. Of many possible determinants affecting microbiome composition, host phylogeny, host diet, and local environment are the most important. How these factors interact across spatial scales is not well understood. Here, we seek to identify the main influences on microbiome composition in a specialist insect, the western corn rootworm (WCR; Diabrotica virgifera virgifera), by analyzing the bacterial communities of adults collected from their obligate host plant, corn (Zea mays), across several geographic locations and comparing the patterns in communities to its congeneric species, the northern corn rootworm (NCR; Diabrotica barberi). We found that bacterial communities of WCR and NCR shared a portion of their bacterial communities even when collected from disparate locations. However, within each species, the location of collection significantly influenced the composition of their microbiome. Correlations of geographic distance between sites with WCR bacterial community composition revealed different patterns at different spatial scales. Community similarity decreased with increased geographic distance at smaller spatial scales (~25 km between the nearest sites). At broad spatial scales (>200 km), community composition was not correlated with distances between sites, but instead reflected the historical invasion path of WCR across the United States. These results suggest bacterial communities are structured directly by dispersal dynamics at small, regional spatial scales, while landscape-level genetic or environmental differences may drive community composition across broad spatial scales in this specialist insect.

8.
Viruses ; 14(2)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35215990

RESUMO

Sequences derived from a novel toursvirus were identified from pooled genomic short read data from U.S. populations of southern corn rootworm (SCR, Diabrotica undecimpunctata howardi Barber) and northern corn rootworm (NCR, Diabrotica barberi Smith & Lawrence). Most viral sequences were identified from the SCR genomic dataset. As proteins encoded by toursvirus sequences from SCR and NCR were almost identical, the contig sets from SCR and NCR were combined to generate 26 contigs. A total of 108,176 bp were assembled from these contigs, with 120 putative toursviral ORFs identified indicating that most of the viral genome had been recovered. These ORFs included all 40 genes that are common to members of the Ascoviridae. Two genes typically present in Ascoviridae (ATP binding cassette transport system permeases and Baculovirus repeated open reading frame), were not detected. There was evidence for transposon insertion in viral sequences at different sites in the two host species. Phylogenetic analyses based on a concatenated set of 45 translated protein sequences clustered toursviruses into a distinct clade. Based on the combined evidence, we propose taxonomic separation of toursviruses from Ascoviridae.


Assuntos
Ascoviridae/genética , Besouros/virologia , Animais , Ascoviridae/classificação , Besouros/classificação , DNA Viral/genética , Feminino , Genes Virais , Genoma Viral/genética , Genômica , Masculino , Fases de Leitura Aberta , Filogenia
9.
J Econ Entomol ; 115(1): 124-132, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-34897490

RESUMO

The fall armyworm, Spodoptera frugiperda (Smith), is an invasive pest of cereal crops that now inhabits southern China year-round. Cultivation of crops unsuitable as host plants has been an effective pest management strategy for some insect pests, but the effects of green manure crops on S. frugiperda have not been investigated. An age-stage two-sex life table and tethered flight performance of S. frugiperda reared on different green manure species were obtained, and a population dynamics model established. Developmental durations of stages, survival rates, and fecundities of S. frugiperda differed significantly depending on host plant. Larvae fed Astragalus sinicus L. did not complete development. Although some larvae fed Vicia villosa Roth and Vicia sativa L. completed development, generation time was significantly prolonged, egg production was halved, and net reproductive rate decreased to 31% and 3% of those reared on corn, respectively. Survival rates of early-instars fed V. villosa and V. sativa were significantly lower than those fed corn. Population dynamics projections over 90 d showed the number of generations of S. frugiperda fed on V. villosa and V. sativa was reduced compared to those reared on corn. Flight performance of S. frugiperda reared on V. villosa decreased significantly compared to corn. Our results show that the three green manure species are unsuitable host plants for S. frugiperda. Therefore, reduction of corn production in southern China through rotation with these green manure crops may be a feasible method of ecological management of this major corn pest in China.


Assuntos
Esterco , Mariposas , Animais , Fertilidade , Larva , Controle de Pragas , Spodoptera , Zea mays
10.
BMC Genomics ; 22(1): 639, 2021 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-34479486

RESUMO

BACKGROUND: Resistance of pest insect species to insecticides, including B. thuringiensis (Bt) pesticidal proteins expressed by transgenic plants, is a threat to global food security. Despite the western corn rootworm, Diabrotica virgifera virgifera, being a major pest of maize and having populations showing increasing levels of resistance to hybrids expressing Bt pesticidal proteins, the cell mechanisms leading to mortality are not fully understood. RESULTS: Twenty unique RNA-seq libraries from the Bt susceptible D. v. virgifera inbred line Ped12, representing all growth stages and a range of different adult and larval exposures, were assembled into a reference transcriptome. Ten-day exposures of Ped12 larvae to transgenic Bt Cry3Bb1 and Gpp34/Tpp35Ab1 maize roots showed significant differential expression of 1055 and 1374 transcripts, respectively, compared to cohorts on non-Bt maize. Among these, 696 were differentially expressed in both Cry3Bb1 and Gpp34/Tpp35Ab1 maize exposures. Differentially-expressed transcripts encoded protein domains putatively involved in detoxification, metabolism, binding, and transport, were, in part, shared among transcripts that changed significantly following exposures to the entomopathogens Heterorhabditis bacteriophora and Metarhizium anisopliae. Differentially expressed transcripts in common between Bt and entomopathogen treatments encode proteins in general stress response pathways, including putative Bt binding receptors from the ATP binding cassette transporter superfamily. Putative caspases, pro- and anti-apoptotic factors, as well as endoplasmic reticulum (ER) stress-response factors were identified among transcripts uniquely up-regulated following exposure to either Bt protein. CONCLUSIONS: Our study suggests that the up-regulation of genes involved in ER stress management and apoptotic progression may be important in determining cell fate following exposure of susceptible D. v. virgifera larvae to Bt maize roots. This study provides novel insights into insect response to Bt intoxication, and a possible framework for future investigations of resistance mechanisms.


Assuntos
Bacillus thuringiensis , Besouros , Praguicidas , Animais , Bacillus thuringiensis/genética , Sobrevivência Celular , Besouros/genética , Endotoxinas/toxicidade , Resistência a Inseticidas , Larva/genética , Controle Biológico de Vetores , Plantas Geneticamente Modificadas/genética , Regulação para Cima , Zea mays/genética
11.
Environ Entomol ; 50(3): 541-549, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34008844

RESUMO

Monarch butterfly (Danaus plexippus) populations have declined over the last two decades, attributable in part to declines in its larval host plant, milkweed (Asclepias spp.), across its breeding range. Conservation efforts in the United States call for restoration of 1.3 billion milkweed stems into the Midwestern landscape. Reaching this goal will require habitat establishment in marginal croplands, where there is a high potential for exposure to agrochemicals. Corn and soybean crops may be treated with neonicotinoid insecticides systemically or through foliar applications to provide protection against insect pests. Here, we investigate whether ovipositing monarchs discriminate against milkweed plants exposed to the neonicotinoid insecticide imidacloprid, either systemically or through foliar application. In our first experiment, we placed gravid females in enclosures containing a choice of two cut stems for oviposition: one in 15 ml of a 0.5 mg/ml aqueous solution of imidacloprid and one in 15 ml water. In a second experiment, females were given a choice of milkweed plants whose leaves were treated with 30 µl of a 0.825 mg/ml imidacloprid-surfactant solution or plants treated with surfactant alone. To evaluate oviposition preference, we counted and removed eggs from all plants daily for 3 d. We also collected video data on a subset of butterflies to evaluate landing behavior. Results indicate that neither systemic nor foliar treatment with imidacloprid influenced oviposition behavior in female monarchs. The implications of these findings for monarch conservation practices will be informed by the results of ongoing egg and larval toxicity studies.


Assuntos
Asclepias , Borboletas , Animais , Feminino , Neonicotinoides , Nitrocompostos , Oviposição , Óvulo , Estados Unidos
12.
PLoS One ; 16(4): e0250209, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33886610

RESUMO

The European sunflower moth, Homoesoma nebulellum (Denis et Schiffermüller), emerged as a major new pest in Bayannur, China, in 2006. Insecticidal control with a single application is problematic because timing is critical, and multiple applications increase production and environmental costs. Management of H. nebulellum by planting date adjustment can be effective, but the optimal time window for late planting is unknown. Natural levels of H. nebulellum infestation were compared among sunflowers planted on five dates from April 25 to June 5 in two years, and the relationship between timing of adult abundance and flowering assessed. Delaying planting of sunflower from the traditional planting period of April 25 -May 5 to May 15 -June 5 significantly decreased damage by H. nebulellum. Seed infestation rate was 30-40 times higher, and number of larvae/head 75-100 times higher in the earliest two plantings than in the latest two. Within two years of implementing delayed planting in Bayannur city, infestation area decreased from 72% in 2006 to 1.5% in 2008, and production losses decreased from 4.5 ton/ha in 2006 to 0.36 ton/ha in 2008, a 97% decrease compared to 2006. Moreover, the infestation area caused by H. nebulellum was continuously controlled below 5.3% of the planting area since 2008. We found the overlap between the first two days of flowering and peak adult presence was the key factor influencing level of damage caused by H. nebulellum. Because the number of eggs laid in the first two days of flowering accounted for 68% of the total, and sunflower seed infestation rate was positively correlated with the number of trapped adults weighted by proportion of daily oviposition. Oviposition of the majority of eggs in the first two days of flowering suggests an evolutionary mechanism whereby females choose host plants most conducive to larval development, consistent with the preference-performance hypothesis.


Assuntos
Helianthus/crescimento & desenvolvimento , Horticultura , Inseticidas , Mariposas , Animais , China
13.
Environ Entomol ; 50(3): 523-531, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-33693559

RESUMO

A facultative commitment to adult migration in the larval stage can be modified again after adult emergence in some Lepidoptera when influenced by an appropriate environmental cue during a sensitive stage. This phenomenon is termed secondary regulation of migration. The sensitive stage in adult beet webworm, Loxostege sticticalis L. (Lepidoptera: Pyralidae), was determined experimentally by starvation of presumed migrant females reared from gregarious-phase larvae (induced by crowding at 10 larvae per 650-ml jar). When presumed migrant adults were starved for 24 h on either of the first 2 d after emergence, the preoviposition period was shortened. In contrast, preoviposition periods were not significantly shortened for migrants starved on day 3 or when starvation lasted for more than 1 d after emergence. Because the preoviposition period corresponds to the migratory period in beet webworm, the results suggest that the first 2 d of adult life in the beet webworm is the sensitive stage during which presumed migrants can be switched to residents by an appropriate environmental cue. During the sensitive stage or not, starvation did not influence lifetime fecundity, oviposition period, longevity, or hatching rate of eggs laid by the starvation-stressed moths. Starvation on the first day also increased tethered flight performance and accelerated both flight muscle and ovarian development. The results suggest that a pulse of starvation in the sensitive period may inhibit the expected migration by accelerating and compressing the cycle of migratory flight muscle development and degeneration, while accelerating ovarian development, which is normally suppressed until after migration.


Assuntos
Beta vulgaris , Mariposas , Animais , Feminino , Larva , Oviposição , Óvulo
14.
Viruses ; 13(2)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33572446

RESUMO

Analysis of pooled genomic short read sequence data revealed the presence of nudivirus-derived sequences from U.S. populations of both southern corn rootworm (SCR, Diabrotica undecimpunctata howardi Barber) and western corn rootworm (WCR, Diabrotica virgifera virgifera LeConte). A near complete nudivirus genome sequence was assembled from sequence data for an SCR population with relatively high viral titers. A total of 147,179 bp was assembled from five contigs that collectively encode 109 putative open reading frames (ORFs) including 20 nudivirus core genes. In contrast, genome sequence recovery was incomplete for a second nudivirus from WCR, although sequences derived from this virus were present in three geographically dispersed populations. Only 48,989 bp were assembled with 48 putative ORFs including 13 core genes, representing about 20% of a typical nudivirus genome. Phylogenetic analysis indicated that both corn rootworm nudiviruses grouped with the third known nudivirus of beetles, Oryctes rhinoceros nudivirus in the genus Alphanudivirus. On the basis of phylogenetic and additional analyses, we propose further taxonomic separation of nudiviruses within Alphanudivirus and Betanudivirus into two subfamilies and five genera. Identification of nudivirus-derived sequences from two species of corn rootworm highlights the diversity of viruses associated with these agricultural insect pests.


Assuntos
Besouros/virologia , Nudiviridae/genética , Animais , Besouros/classificação , DNA Viral/genética , Genes Virais , Genoma Viral/genética , Genômica , Nudiviridae/classificação , Fases de Leitura Aberta , Filogenia , Viroma/genética
15.
Sci Rep ; 10(1): 11626, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32669571

RESUMO

In migratory insects, increasing evidence has demonstrated juvenile hormone (JH) is involved in regulating adult reproduction and flight. Our previous study demonstrated that the switch from migrants to residents in Mythimna separata could be induced by adverse environmental conditions during a sensitive period in adulthood (the first day post-emergence), but the role of JH in this switch is not clear. Here, we found a significantly different pattern of JH titers between migrants and residents, with migrants showing a slower release of JH during adulthood than residents. Application of JH analogue (JHA) in the 1-day-old adults, significantly accelerated adult reproduction and suppressed flight capacity. The pre-oviposition period and period of first oviposition of migrants treated with JHA were significantly shorter, while the total lifetime fecundity and mating percentage increased. The flight capacity and dorso-longitudinal muscle size of the migrants were decreased significantly when treated with JHA. The effect of JHA on reproduction and flight capacity indicate that JH titers during the sensitive period (first day post-emergence) regulates the shift from migrants to residents in M. separata.


Assuntos
Migração Animal , Voo Animal , Hormônios Juvenis/fisiologia , Mariposas/fisiologia , Músculos/fisiologia , Animais , Meio Ambiente , Feminino , Fertilidade , Oviposição , Reprodução
16.
J Vis Exp ; (152)2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31736493

RESUMO

The western corn rootworm, Diabrotica virgifera virgifera (LeConte) (Coleoptera: Chrysomelidae), is an economically important pest of corn in the northern United States. Some populations have developed resistance to management strategies including transgenic corn that produces insecticidal toxins derived from the bacterium Bacillus thuringiensis (Bt). Knowledge of western corn rootworm dispersal is of critical importance for models of resistance evolution, spread, and mitigation. Flight behavior of an insect, especially over a long distance, is inherently difficult to observe and characterize. Flight mills provide a means to directly test developmental and physiological impacts and consequences of flight in the laboratory that cannot be obtained in field studies. In this study, flight mills were used to measure the timing of flight activity, total number of flights, and the distance, duration, and speed of flights taken by female rootworms during a 22-h test period. Sixteen flight mills were housed in an environmental chamber with programmable lighting, temperature, and humidity control. The flight mill described is of a typical design, where a flight arm is free to rotate about a central pivot. Rotation is caused by flight of an insect tethered to one end of the flight arm, and each rotation is recorded by a sensor with a time-stamp. Raw data are compiled by software, which are subsequently processed to provide summary statistics for flight parameters of interest. The most difficult task for any flight mill study is attachment of the tether to the insect with an adhesive, and the method used must be tailored to each species. The attachment must be strong enough to hold the insect in a rigid orientation and to prevent detachment during movement, while not interfering with natural wing motion during flight. The attachment process requires dexterity, finesse, and speed, making video footage of the process for rootworms of value.


Assuntos
Besouros/fisiologia , Voo Animal/fisiologia , Larva/fisiologia , Distribuição Animal , Animais , Feminino , Software
17.
Mol Ecol ; 28(19): 4439-4452, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31495004

RESUMO

Patterns of mating for the European corn borer (Ostrinia nubilalis) moth depend in part on variation in sex-pheromone blend. The ratio of (E)-11- and (Z)-11-tetradecenyl acetate (E11- and Z11-14:OAc) in the pheromone blend that females produce and males respond to differs between strains of O. nubilalis. Populations also vary in female oviposition preference for and larval performance on maize (C4) and nonmaize (C3) host plants. The relative contributions of sexual and ecological trait variation to the genetic structure of O. nubilalis remains unknown. Host-plant use (13 C/14 C ratios) and genetic differentiation were estimated among sympatric E and Z pheromone strain O. nubilalis males collected in sex-pheromone baited traps at 12 locations in Pennsylvania and New York between 2007 and 2010. Among genotypes at 65 single nucleotide polymorphism marker loci, variance at a position in the pheromone gland fatty acyl-reductase (pgfar) gene at the locus responsible for determining female pheromone ratio (Pher) explained 64% of the total genetic differentiation between males attracted to different pheromones (male response, Resp), providing evidence of sexual inter-selection at these unlinked loci. Principal coordinate, Bayesian clustering, and distance-based redundancy analysis (dbRDA) demonstrate that host plant history or geography does not significantly contribute to population variation or differentiation among males. In contrast, these analyses indicate that pheromone response and pgfar-defined strain contribute significantly to population genetic differentiation. This study suggests that behavioural divergence probably plays a larger role in driving genetic variation compared to host plant-defined ecological adaptation.


Assuntos
Genética Populacional , Genômica , Mariposas/genética , Atrativos Sexuais , Zea mays/parasitologia , Animais , Ecologia , Feminino , Geografia , Interações Hospedeiro-Parasita , Masculino , Mariposas/fisiologia , New York , Oviposição , Pennsylvania , Reprodução , Simpatria
18.
PLoS One ; 14(3): e0212696, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30822329

RESUMO

The western corn rootworm, Diabrotica virgifera virgifera (LeConte) (Coleoptera: Chrysomelidae), is an economically important pest of corn in the northern United States. Some populations have developed resistance to management strategies including transgenic corn that produces insecticidal toxins derived from the bacterium Bacillus thuringiensis (Bt). Knowledge of insect dispersal is of critical importance for models of resistance evolution. Larval density affects survival in the field, and stress from crowding often affects facultative long-distance dispersal of adult insects. In this study, we used laboratory flight mills to characterize western corn rootworm flight performance as a function of larval rearing density. Larvae were reared under three densities and the resulting adult females were either allowed to fly voluntarily for 22 h or forced to fly specified durations. For both experiments we also measured lifetime fecundity following flight. The three rearing densities placed differential levels of stress on individuals, as evidenced by decreased survival to adulthood and decreased size of adults at greater rearing density. When larvae were reared under crowded conditions the resulting females were more likely to engage in flight activity, including long uninterrupted flights lasting >10 min, than those reared under low density conditions. Flight and egg production are both energy intensive processes. However, we found no evidence in either voluntary or forced flight experiments of a tradeoff between flight activity and female fecundity. The results suggest that females emerging from high density populations in cornfields are more likely to disperse and disperse farther than those emerging from low density populations. These results are important because they imply that variation in population density in the landscape will affect dispersal, which may in turn require computer models of resistance evolution to incorporate multiple dispersal rates arising from varying larval densities among fields.


Assuntos
Besouros/crescimento & desenvolvimento , Resistência a Inseticidas/genética , Controle Biológico de Vetores , Plantas Geneticamente Modificadas , Zea mays , Animais , Bacillus thuringiensis/genética , Larva/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/parasitologia , Zea mays/genética , Zea mays/crescimento & desenvolvimento , Zea mays/parasitologia
19.
Curr Opin Insect Sci ; 26: 50-56, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29764660

RESUMO

The European corn borer, Ostrinia nubilalis, is a model species for elucidating mechanisms underlying adaptively differentiated subpopulations in the face of reciprocal gene flow, and is a major pest of cultivated maize in North America and Eurasia. Strains are characterized by different pheromone communication systems in combination with voltinism strains that are adapted to distinct local climate and photoperiod through adjustments in diapause traits. However, only partial barriers to inter-strain hybridization exist in areas of sympatry. Recent research shows that genes governing important strain-specific isolating traits are disproportionately located on the Z-chromosome. Furthermore, co-adapted combinations of some of these genes are non-recombining due to location within a large chromosomal inversion, and assist in maintaining strain integrity despite hybridization.


Assuntos
Mariposas/genética , Simpatria/genética , Adaptação Fisiológica , Animais , Feminino , Fluxo Gênico , Genoma de Inseto , Hibridização Genética , Masculino , Feromônios/genética , Isolamento Reprodutivo , Zea mays
20.
J Econ Entomol ; 111(3): 1243-1248, 2018 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-29635293

RESUMO

To understand the migratory flight behaviors of the loreyi leafworm, Mythimna loreyi Walker (Lepidoptera: Noctuidae), both tethered (flight distance, time, and velocity) and free-flight activity (flight action, duration, and frequency) of adults at different ages, sexes, and temperatures were investigated using computer-controlled insect flight mills and an autonomous flight monitoring system. Tethered flight activity differed significantly among ages and rearing temperature, but not sex. Newly emerged adults (the first day after emergence) displayed the lowest flight time, distance, and speed. However, flight performance increased with age, peaking at 3 d. Relatively strong flight performance was maintained up to 5 d postemergence and then declined significantly by day 6. There was no significant difference in flight performance between sexes for 3-d-old moths. Adults reared as larvae at 24°C averaged significantly longer flight duration and distance than those reared at other temperatures. Both lower and higher rearing temperatures negatively affected tethered flight. Similar results among age and rearing temperature treatments were observed in autonomous free-flight tests. During 12-h free-flight tests, flight activity peaked from 6 to 10 h after beginning of darkness. Free-flight activity of 1- and 6-d-old adults was significantly less than that of 3-, 4-, and 5-d-old adults. Adults reared at 24°C showed significantly greater free-flight action, duration, and frequency than those reared at other temperatures. The results suggest that M. loreyi may be a migratory species.


Assuntos
Voo Animal , Mariposas/fisiologia , Fatores Etários , Migração Animal , Animais , Feminino , Masculino , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...