Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 14(16)2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34443232

RESUMO

The tenacious thirst for fuel-saving and desirable physical and mechanical properties of the materials have compelled researchers to focus on a new generation of aluminum hybrid composites for automotive and aircraft applications. This work investigates the microhardness behavior and microstructural characterization of aluminum alloy (Al 7075)-titanium carbide (TiC)-graphite (Gr) hybrid composites. The hybrid composites were prepared via the powder metallurgy technique with the amounts of TiC (0, 3, 5, and 7 wt.%), reinforced to Al 7075 + 1 wt.% Gr. The microstructural characteristics were investigated by optical microscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDS) elemental mapping. A Box Behnken design (BBD) response surface methodology (RSM) approach was utilized for modeling and optimization of density and microhardness independent parameters and to develop an empirical model of density and microhardness in terms of process variables. Effects of independent parameters on the responses have been evaluated by analysis of variance (ANOVA). The density and microhardness of the Al 7075-TiC-Gr hybrid composites are found to be increased by increasing the weight percentage of TiC particles. The optimal conditions for obtaining the highest density and microhardness are estimated to be 6.79 wt.% TiC at temperature 626.13 °C and compaction pressure of 300 Mpa.

2.
Int J Biol Macromol ; 99: 265-273, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28249765

RESUMO

The aim of this paper is to investigate the characteristics of thermoplastic sugar palm starch/agar (TPSA) blend containing Eucheuma cottonii seaweed waste as biofiller. The composites were prepared by melt-mixing and hot pressing at 140°C for 10min. The TPSA/seaweed composites were characterized for their mechanical, thermal and biodegradation properties. Incorporation of seaweed from 0 to 40wt.% has significantly improved the tensile, flexural, and impact properties of the TPSA/seaweed composites. Scanning electron micrograph of the tensile fracture showed homogeneous surface with formation of cleavage plane. It is also evident from TGA results that thermal stability of the composites were enhanced with addition of seaweed. After soil burial for 2 and 4 weeks, the biodegradation of the composites was enhanced with addition of seaweed. Overall, the incorporation of seaweed into TPSA enhances the properties of TPSA for short-life product application such as tray, plate, etc.


Assuntos
Ágar/química , Arecaceae/química , Plásticos/química , Alga Marinha/química , Amido/química , Temperatura , Resistência à Tração , Solo/química , Amido/metabolismo
3.
Int J Biol Macromol ; 97: 606-615, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28109810

RESUMO

The aim of this research is to investigate the effect of sugar palm fibre (SPF) on the mechanical, thermal and physical properties of seaweed/thermoplastic sugar palm starch agar (TPSA) composites. Hybridized seaweed/SPF filler at weight ratio of 25:75, 50:50 and 75:25 were prepared using TPSA as a matrix. Mechanical, thermal and physical properties of hybrid composites were carried out. Obtained results indicated that hybrid composites display improved tensile and flexural properties accompanied with lower impact resistance. The highest tensile (17.74MPa) and flexural strength (31.24MPa) was obtained from hybrid composite with 50:50 ratio of seaweed/SPF. Good fibre-matrix bonding was evident in the scanning electron microscopy (SEM) micrograph of the hybrid composites' tensile fracture. Fourier transform infrared spectroscopy (FT-IR) analysis showed increase in intermolecular hydrogen bonding following the addition of SPF. Thermal stability of hybrid composites was enhanced, indicated by a higher onset degradation temperature (259°C) for 25:75 seaweed/SPF composites than the individual seaweed composites (253°C). Water absorption, thickness swelling, water solubility, and soil burial tests showed higher water and biodegradation resistance of the hybrid composites. Overall, the hybridization of SPF with seaweed/TPSA composites enhances the properties of the biocomposites for short-life application; that is, disposable tray, plate, etc.


Assuntos
Ágar/química , Arecaceae/química , Fenômenos Mecânicos , Plásticos/química , Alga Marinha/química , Amido/química , Temperatura , Absorção Fisico-Química , Solo/química , Solubilidade , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA