Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38106136

RESUMO

Comparative genomics approaches seek to associate evolutionary genetic changes with the evolution of phenotypes across a phylogeny. Many of these methods, including our evolutionary rates based method, RERconverge, lack the capability of analyzing non-ordinal, multicategorical traits. To address this limitation, we introduce an expansion to RERconverge that associates shifts in evolutionary rates with the convergent evolution of multi-categorical traits. The categorical RERconverge expansion includes methods for performing categorical ancestral state reconstruction, statistical tests for associating relative evolutionary rates with categorical variables, and a new method for performing phylogenetic permulations on multi-categorical traits. In addition to demonstrating our new method on a three-category diet phenotype, we compare its performance to naive pairwise binary RERconverge analyses and two existing methods for comparative genomic analyses of categorical traits: phylogenetic simulations and a phylogenetic signal based method. We also present a diagnostic analysis of the new permulations approach demonstrating how the method scales with the number of species and the number of categories included in the analysis. Our results show that our new categorical method outperforms phylogenetic simulations at identifying genes and enriched pathways significantly associated with the diet phenotype and that the new ancestral reconstruction drives an improvement in our ability to capture diet-related enriched pathways. Our categorical permulations were able to account for non-uniform null distributions and correct for non-independence in gene rank during pathway enrichment analysis. The categorical expansion to RERconverge will provide a strong foundation for applying the comparative method to categorical traits on larger data sets with more species and more complex trait evolution.

2.
Mol Biol Evol ; 38(7): 3004-3021, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-33739420

RESUMO

Many evolutionary comparative methods seek to identify associations between phenotypic traits or between traits and genotypes, often with the goal of inferring potential functional relationships between them. Comparative genomics methods aimed at this goal measure the association between evolutionary changes at the genetic level with traits evolving convergently across phylogenetic lineages. However, these methods have complex statistical behaviors that are influenced by nontrivial and oftentimes unknown confounding factors. Consequently, using standard statistical analyses in interpreting the outputs of these methods leads to potentially inaccurate conclusions. Here, we introduce phylogenetic permulations, a novel statistical strategy that combines phylogenetic simulations and permutations to calculate accurate, unbiased P values from phylogenetic methods. Permulations construct the null expectation for P values from a given phylogenetic method by empirically generating null phenotypes. Subsequently, empirical P values that capture the true statistical confidence given the correlation structure in the data are directly calculated based on the empirical null expectation. We examine the performance of permulation methods by analyzing both binary and continuous phenotypes, including marine, subterranean, and long-lived large-bodied mammal phenotypes. Our results reveal that permulations improve the statistical power of phylogenetic analyses and correctly calibrate statements of confidence in rejecting complex null distributions while maintaining or improving the enrichment of known functions related to the phenotype. We also find that permulations refine pathway enrichment analyses by correcting for nonindependence in gene ranks. Our results demonstrate that permulations are a powerful tool for improving statistical confidence in the conclusions of phylogenetic analysis when the parametric null is unknown.


Assuntos
Técnicas Genéticas , Fenótipo , Filogenia , Animais , Humanos
3.
Cancer Res ; 78(9): 2419-2431, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29686021

RESUMO

The search for effective combination therapies for cancer has focused heavily on synergistic combinations because they exhibit enhanced therapeutic efficacy at lower doses. Although synergism is intuitively attractive, therapeutic success often depends on whether drug resistance develops. The impact of synergistic combinations (vs. antagonistic or additive combinations) on the process of drug-resistance evolution has not been investigated. In this study, we use a simplified computational model of cancer cell numbers in a population of drug-sensitive, singly-resistant, and fully-resistant cells to simulate the dynamics of resistance evolution in the presence of two-drug combinations. When we compared combination therapies administered at the same combination of effective doses, simulations showed synergistic combinations most effective at delaying onset of resistance. Paradoxically, when the therapies were compared using dose combinations with equal initial efficacy, antagonistic combinations were most successful at suppressing expansion of resistant subclones. These findings suggest that, although synergistic combinations could suppress resistance through early decimation of cell numbers (making them "proefficacy" strategies), they are inherently fragile toward the development of single resistance. In contrast, antagonistic combinations suppressed the clonal expansion of singly-resistant cells, making them "antiresistance" strategies. The distinction between synergism and antagonism was intrinsically connected to the distinction between offensive and defensive strategies, where offensive strategies inflicted early casualties and defensive strategies established protection against anticipated future threats. Our findings question the exclusive focus on synergistic combinations and motivate further consideration of nonsynergistic combinations for cancer therapy.Significance: Computational simulations show that if different combination therapies have similar initial efficacy in cancers, then nonsynergistic drug combinations are more likely than synergistic drug combinations to provide a long-term defense against the evolution of therapeutic resistance. Cancer Res; 78(9); 2419-31. ©2018 AACR.


Assuntos
Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica , Resistencia a Medicamentos Antineoplásicos , Modelos Teóricos , Algoritmos , Antineoplásicos/uso terapêutico , Antagonismo de Drogas , Sinergismo Farmacológico , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA