Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Extremophiles ; 24(6): 875-885, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32955600

RESUMO

Inland athalassohaline solar salterns provide unique opportunity to study microbial successions along salinity gradients that resemble transition in natural hypersaline lakes. We analyzed for the first time 16S rRNA gene amplicon sequences of bacteria (V1-V2) and archaea (V4-V5) in saltern brines of India's largest inland hypersaline Sambhar Lake. Brines of the salterns (S1-S4) are alkaline (pH 9.5-10.5) with salinities of 130, 170, 280 and 350 gL-1 respectively. 16S rRNA gene copy-number of archaea outnumbered that of bacteria in all salterns. Their diversity also increased along S1 through S4, while that of bacteria decreased. Brines of S3 and S4 were dominated by specialized extreme halophilic bacterial (Halanaerobiales, Rhodothermaceae) and archaeal (Halobacteriales, Haloferacales) members with recognized salt-in strategy for osmoadaptation. Microbial assemblages positively correlated to saltern pH, total salinity, and ionic composition. Archaea in S1 and S2 were unprecedentedly represented by poorly known as-yet uncultivated groups, Woesearchaeota (90.35-93.51%) and Nanohaloarchaeota that belong to the newly proposed nano-sized superphylum DPANN. In fact, these taxa were identified in archaeal datasets of other athalassohaline salterns after re-analysis using latest RDP database. Thus, microbial compositions in hypersaline lakes are complex and need revisit particularly for their archaeal diversity to understand their hitherto unknown ecological function in extreme environments.


Assuntos
Lagos/microbiologia , Microbiota , Filogenia , Águas Salinas , Archaea/classificação , Bactérias/classificação , Índia , RNA Ribossômico 16S/genética , Salinidade
2.
Ecotoxicol Environ Saf ; 184: 109634, 2019 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-31520950

RESUMO

Imidazolium-based ionic liquids (IL) with short-alkyl side chain such as 1-ethyl-3-methyl-imidazolium chloride ([Emim]Cl) and 1-butyl-3-methyl-imidazolium chloride ([Bmim]Cl) has immense application potential including in lignocellulosic bioenergy production. But they are toxic to most microorganisms, and those isolated from different environments as IL-tolerant have salt tolerance capabilities. This study evaluates the relationship between salt and [Emim]Cl tolerance of microorganisms using different salinity sediments (2-19%) and brines (35%) of India's largest inland hypersaline lake, Sambhar in Rajasthan as the model system. While samples with 2% and 35% salinities do not yield any [Emim]Cl (100 mM) tolerant colonies, others have 6-50% colonies tolerant to the IL. Similar trend was observed with 50 mM [Bmim]Cl. Moderate halophilic isolates of genera Halomonas and Bacillus (growth in 0.7-3.0 M NaCl) isolated from the sediments could grow in as high as 375 mM [Emim]Cl, or 125 mM [Bmim]Cl facilitated by higher synthesis, and uptake of organic osmolytes; and up to 1.7-fold increased activity of active efflux pumps. [Bmim]Cl was more toxic than [Emim]Cl in all performed experiments. [Emim]Cl-adapted cells could trounce IL-induced stress. Interestingly, enrichment with 100 mM [Emim]Cl resulted in increase of IL-tolerant colonies in all sediments including the one with 2% salinity. However, the salt saturated brines (35%) do not yield any such colony even after repeated incubations. Extreme halophilic archaea, Natronomonas (growth in 3.0-4.0 M NaCl) isolated from such brines, were exceedingly sensitive to even 5 mM [Emim]Cl, or 1 mM [Bmim]Cl. Two additional extremophilic archaea, namely Haloferax and Haladaptatus were also sensitive to the tested ILs. Archaeal sensitivity is possibly due to the competitive interaction of [Emim]+ with their acidic proteome (15.4-17.5% aspartic and glutamic acids, against 10.7-12.9% in bacteria) that they maintain to stabilize the high amount of K+ ion accumulated by salt-in strategy. Thus, general salt adaptation strategies of moderate halophilic bacteria help them to restrain toxicity of these ILs, but extremophilic archaea are highly sensitive and demands meticulous use of these solvents to prevent environmental contamination.


Assuntos
Halobacteriaceae/efeitos dos fármacos , Halomonas/efeitos dos fármacos , Imidazóis/toxicidade , Líquidos Iônicos/toxicidade , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , Índia , Lagos/química , Lagos/microbiologia , Salinidade , Tolerância ao Sal
3.
Appl Microbiol Biotechnol ; 102(14): 6207-6219, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29846778

RESUMO

Activity-based screening of metagenomic DNA libraries is a promising approach to fish out genes encoding novel bioactive compounds/enzymes of industrial importance. The starting point of such functional screening in fosmid vectors is isolation of high molecular weight (HMW) DNA of sufficient purity from diverse environments. Metagenomic DNA isolation protocols mostly employ mechanical cell lysis that yields fragmented DNA. Those established for HMW DNA using enzymatic lysis have not considered samples with high lignocellulose or humic acid content. Enzymes from such environments are in great demand for bioenergy, paper, and related industries. Thus, an improved method was standardized that has three key features, i.e., use of harvested microbial biomass instead of raw samples, removal of humic substances prior to cell lysis by aluminum sulfate flocculation, and enzymatic/chemical lysis of cells with a lysozyme, mutanolysin, proteinase K, and SDS cocktail followed by phenol-chloroform extraction and precipitation of DNA by polyethylene glycol and NaCl. HMW DNA (~ 40 kb) was efficiently isolated from garden and forest soils, rice straw compost, and degrading wood from a hypersaline lake. The humic acid removal efficiency across samples was 96-98%. The isolated DNA was of high quality/purity and could be successfully used in downstream applications like PCR, ligation, and fosmid cloning. In fact, the DNA was directly used without any size selection, for fosmid library preparation with 70-90% efficiency as compared to the control insert. Thus, the method could suitably be used for HMW DNA isolation for the functional screening of enzymes from diverse humic acid-/lignocellulose-rich environments.


Assuntos
DNA/química , DNA/isolamento & purificação , Metagenômica/métodos , Microbiologia do Solo , Animais , Clonagem Molecular , Substâncias Húmicas , Lignina/química , Peso Molecular , Solo/química
4.
Mol Microbiol ; 109(2): 169-191, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29669166

RESUMO

The SoxXAYZB(CD)2 -mediated pathway of bacterial sulfur-chemolithotrophy explains the oxidation of thiosulfate, sulfide, sulfur and sulfite but not tetrathionate. Advenella kashmirensis, which oxidizes tetrathionate to sulfate, besides forming it as an intermediate during thiosulfate oxidation, possesses a soxCDYZAXOB operon. Knock-out mutations proved that only SoxBCD is involved in A. kashmirensis tetrathionate oxidation, whereas thiosulfate-to-tetrathionate conversion is Sox independent. Expression of two glutathione metabolism-related proteins increased under chemolithotrophic conditions, as compared to the chemoorganotrophic one. Substrate-dependent oxygen consumption pattern of whole cells, and sulfur-oxidizing enzyme activities of cell-free extracts, measured in the presence/absence of thiol inhibitors/glutathione, corroborated glutathione involvement in tetrathionate oxidation. Furthermore, proteome analyses detected a sulfite:acceptor oxidoreductase (SorAB) exclusively under chemolithotrophic conditions, while expression of a methanol dehydrogenase (XoxF) homolog, subsequently named thiol dehydrotransferase (ThdT), was found to increase 3- and 10-fold during thiosulfate-to-tetrathionate conversion and tetrathionate oxidation respectively. A thdT knock-out mutant did not oxidize tetrathionate but converted half of the supplied 40 mM S-thiosulfate to tetrathionate. Knock-out of another thiosulfate dehydrogenase (tsdA) gene proved that both ThdT and TsdA individually converted ∼ 20 mM S-thiosulfate to tetrathionate. The overexpressed and isolated ThdT protein exhibited PQQ-dependent thiosulfate dehydrogenation, whereas its PQQ-independent thiol transfer activity involving tetrathionate and glutathione potentially produced a glutathione:sulfodisulfane adduct and sulfite. SoxBCD and SorAB were hypothesized to oxidize the aforesaid adduct and sulfite respectively.

5.
Microbiology (Reading) ; 164(2): 142-153, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29393019

RESUMO

Antibiotics are widely used at sub-lethal concentrations as a feed supplement to enhance poultry productivity. To understand antibiotic-induced temporal changes in the structure and function of gut microbiota of chicken, two flocks were maintained for six weeks on a carbohydrate- and protein-rich diet. The feed in the conventional diet (CD) group was supplemented with sub-lethal doses of chlorotetracycline, virginiamycin and amoxicillin, while the organic diet (OD) had no such addition. Antibiotic-fed birds were more productive, with a lower feed conversion ratio (FCR). Their faecal samples also had higher total heterotrophic bacterial load and antibiotic resistance capability. Deep sequencing of 16S rDNA V1-V2 amplicons revealed Firmicutes as the most dominant phylum at all time points, with the predominant presence of Lactobacillales members in the OD group. The productivity indicator, i.e. higher Firmicutes:Bacteroidetes ratio, particularly in the late growth phase, was more marked in CD amplicon sequences, which was supported by culture-based enumerations on selective media. CD datasets also showed the prevalence of known butyrate-producing genera such as Faecalibacterium, Ruminococcus, Blautia, Coprococcus and Bacteroides, which correlates closely with their higher PICRUSt-based in silico predicted 'glycan biosynthesis and metabolism'-related Kyoto Encyclopedia of Genes and Genomes (KEGG) orthologues. Semi-quantitative end-point PCR targeting of the butyryl-CoA: acetate CoA-transferase gene also confirmed butyrate producers as being late colonizers, particularly in antibiotic-fed birds in both the CD flocks and commercial rearing farms. Thus, antibiotics preferentially enrich bacterial populations, particularly short-chain fatty acid producers that can efficiently metabolize hitherto undigestable feed material such as glycans, thereby increasing the energy budget of the host and its productivity.


Assuntos
Ração Animal/análise , Antibacterianos/administração & dosagem , Bactérias/classificação , Bactérias/metabolismo , Ácidos Graxos Voláteis/metabolismo , Microbioma Gastrointestinal , Aves Domésticas/microbiologia , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Butiratos/metabolismo , DNA Bacteriano/genética , Fezes/microbiologia , Microbioma Gastrointestinal/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA