Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
3D Print Addit Manuf ; 11(2): e731-e742, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38689899

RESUMO

Laser powder bed fusion (LPBF) of Al-Cu alloys shows high susceptibility to cracking due to a wide solidification temperature range. In this work, 2024 alloys were manufactured by LPBF at different laser processing parameters. The effect of processing parameters on the densification behavior and mechanical properties of the LPBF-processed 2024 alloys was investigated. The results show that the porosity increases significantly with increasing laser power, while the number of cracks and lack-of-fusion defects increase distinctly with increasing scan speed. The solidification cracking susceptibility of the LPBF-processed 2024 alloys prepared at different processing parameters was analyzed based on a finite element model, which was accurately predicted by theoretical calculations. Dense and crack-free 2024 samples with a high densification of over 98.1% were manufactured at a low laser power of 200 W combined with a low laser scan speed of 100 mm/s. The LPBF-processed 2024 alloys show a high hardness of 110 ± 4 HV0.2, an ultimate tensile strength of 300 ± 15 MPa, and an elongation of ∼3%. This work can serve as reference for obtaining crack-free and high-performance Al-Cu alloys by LPBF.

2.
ACS Appl Bio Mater ; 7(2): 936-949, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38299869

RESUMO

In this study, a recently reported Ti-based metallic glass (MG), without any toxic element, but with a significant amount of metalloid (Si-Ge-B, 18 atom %) and minor soft element (Sn, 2 atom %), was produced in ribbon form using conventional single-roller melt-spinning. The produced Ti60Zr20Si8Ge7B3Sn2 ribbons were investigated by differential scanning calorimetry and X-ray diffraction to confirm their amorphous structure, and their corrosion properties were further investigated by open-circuit potential and cyclic polarization tests. The ribbon's surface was functionalized by tannic acid, a natural plant-based polyphenol, to enhance its performance in terms of corrosion prevention and antimicrobial efficacy. These properties can potentially be exploited in the premucosal parts of dental implants (abutments). The Folin and Ciocalteu test was used for the quantification of tannic acid (TA) grafted on the ribbon surface and of its redox activity. Fluorescent microscopy and ζ-potential measurements were used to confirm the presence of TA on the surfaces of the ribbons. The cytocompatibility evaluation (indirect and direct) of TA-functionalized Ti60Zr20Si8Ge7B3Sn2 MG ribbons toward primary human gingival fibroblast demonstrated that no significant differences in cell viability were detected between the functionalized and as-produced (control) MG ribbons. Finally, the antibacterial investigation of TA-functionalized samples against Staphylococcus aureus demonstrated the specimens' antimicrobial properties, shown by scanning electron microscopy images after 24 h, presenting a few single colonies remaining on their surfaces. The thickness of bacterial aggregations (biofilm-like) that were formed on the surface of the as-produced samples reduced from 3.5 to 1.5 µm.


Assuntos
Dente Suporte , Polifenóis , Titânio , Humanos , Titânio/química , Vidro/química , Antibacterianos/farmacologia
3.
Small ; : e2310364, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38109153

RESUMO

Ni-free Ti-based bulk metallic glasses (BMGs) are exciting materials for biomedical applications because of their outstanding biocompatibility and advantageous mechanical properties. The glassy nature of BMGs allows them to be shaped and patterned via thermoplastic forming (TPF). This work demonstrates the versatility of the TPF technique to create micro- and nano-patterns and hierarchical structures on Ti40 Zr10 Cu34 Pd14 Sn2 BMG. Particularly, a hierarchical structure fabricated by a two-step TPF process integrates 400 nm hexagonal close-packed protrusions on 2.5 µm square protuberances while preserving the advantageous mechanical properties from the as-cast material state. The correlations between thermal history, structure, and mechanical properties are explored. Regarding biocompatibility, Ti40 Zr10 Cu34 Pd14 Sn2 BMGs with four surface topographies (flat, micro-patterned, nano-patterned, and hierarchical-structured surfaces) are investigated using Saos-2 cell lines. Alamar Blue assay and live/dead analysis show that all tested surfaces have good cell proliferation and viability. Patterned surfaces are observed to promote the formation of longer filopodia on the edge of the cytoskeleton, leading to star-shaped and dendritic cell morphologies compared with the flat surface. In addition to potential implant applications, TPF-patterned Ti-BMGs enable a high level of order and design flexibility on the surface topography, expanding the available toolbox for studying cell behavior on rigid and ordered surfaces.

4.
Adv Sci (Weinh) ; : e2204315, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36281692

RESUMO

Currently, predominant high-performance permanent magnets contain rare-earth elements. In the search for rare-earth-free alternates, body-centered tetragonal Fe-Ni is notable. The ordering to form this phase from the usual cubic close-packed Fe-Ni is understood to be possible only below a critical temperature, commonly accepted to be 593 K. The ordering is first demonstrated by using neutron irradiation to accelerate atomic diffusion. The tetragonal phase, designated as the mineral tetrataenite, is found in Fe-based meteorites, its formation attributed to ultra-slow cooling. Despite many attempts with diverse approaches, bulk synthesis of tetrataenite has not been reported. Here it is shown that with appropriate alloy compositions, bulk synthesis of tetrataenite is possible, even in conventional casting at cooling rates 11-15 orders of magnitude higher than in meteorites. The barrier to obtaining tetrataenite (slow ordering from cubic close-packed to body-centered tetragonal) is circumvented, opening a processing window for potential rare-earth-free permanent magnets. The formation of tetrataenite on industrially practicable timescales also throws into question the interpretation of its formation in meteorites and their associated cooling rates.

5.
Mater Today Bio ; 16: 100378, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36039102

RESUMO

This paper envisions Ti40Zr10Cu36Pd14 bulk metallic glass as an oral implant material and evaluates its antibacterial performance in the inhabitation of oral biofilm formation in comparison with the gold standard Ti-6Al-4V implant material. Metallic glasses are superior in terms of biocorrosion and have a reduced stress shielding effect compared with their crystalline counterparts. Dynamic mechanical and thermal expansion analyses on Ti40Zr10Cu36Pd14 show that these materials can be thermomechanically shaped into implants. Static water contact angle measurement on samples' surface shows an increased surface wettability on the Ti-6Al-4V surface after 48 â€‹h incubation in the water while the contact angle remains constant for Ti40Zr10Cu36Pd14. Further, high-resolution transmission and scanning transmission electron microscopy analysis have revealed that Ti40Zr10Cu36Pd14 interior is fully amorphous, while a 15 â€‹nm surface oxide is formed on its surface and assigned as copper oxide. Unlike titanium oxide formed on Ti-6Al-4V, copper oxide is hydrophobic, and its formation reduces surface wettability. Further surface analysis by X-ray photoelectron spectroscopy confirmed the presence of copper oxide on the surface. Metallic glasses cytocompatibility was first demonstrated towards human gingival fibroblasts, and then the antibacterial properties were verified towards the oral pathogen Aggregatibacter actinomycetemcomitans responsible for oral biofilm formation. After 24 â€‹h of direct infection, metallic glasses reported a >70% reduction of bacteria viability and the number of viable colonies was reduced by ∼8 times, as shown by the colony-forming unit count. Field emission scanning electron microscopy and fluorescent images confirmed the lower surface colonization of metallic glasses in comparison with controls. Finally, oral biofilm obtained from healthy volunteers was cultivated onto specimens' surface, and proteomics was applied to study the surface property impact on species composition within the oral plaque.

6.
Sci Rep ; 12(1): 10784, 2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35750707

RESUMO

Metallic glasses (MG) have attracted much attention due to their superior hardness and good corrosion resistance. However, designing new MG compositions is still a big challenge, and their integration into different systems is limited when they are in the shape of bulk materials. Here, we present a new method for the fabrication of MG in the form of microfibers which could greatly help them to be integrated within different systems. The newly proposed technique has the ability to form MG structure from commercially available alloy compositions thanks to its significantly improved quenching rate(~ 108 K.s-1). In this technique, individual melt droplets are ejected on a rotating wheel forming a thin film which are ruptured upon solidification leading to the formation of MG microfibers. In this regard, we have fabricated microfibers from a commercial DIN 1.4401 stainless-steel which could form a completely amorphous structure confirmed by DSC, XRD, and HRTEM. The fabricated MG microfibers show an increased hardness for more than two-fold from 3.5 ± 0.17 GPa for the as-received stainless-steel to 7.77 ± 0.60 GPa for the amorphous microfibers. Subsequent heat-treatment of the microfibers resulted in a nanocrystalline structure with the presence of amorphous regions when the hardness increases even further to 13.5 ± 2.0 GPa. We propose that confinement of both shear transformation zones and dislocations in the heat-treated MG microfibers plays a major role in enhancing strength.

7.
Nat Commun ; 13(1): 127, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013192

RESUMO

The atomistic mechanisms occurring during the processes of aging and rejuvenation in glassy materials involve very small structural rearrangements that are extremely difficult to capture experimentally. Here we use in-situ X-ray diffraction to investigate the structural rearrangements during annealing from 77 K up to the crystallization temperature in Cu44Zr44Al8Hf2Co2 bulk metallic glass rejuvenated by high pressure torsion performed at cryogenic temperatures and at room temperature. Using a measure of the configurational entropy calculated from the X-ray pair correlation function, the structural footprint of the deformation-induced rejuvenation in bulk metallic glass is revealed. With synchrotron radiation, temperature and time resolutions comparable to calorimetric experiments are possible. This opens hitherto unavailable experimental possibilities allowing to unambiguously correlate changes in atomic configuration and structure to calorimetrically observed signals and can attribute those to changes of the dynamic and vibrational relaxations (α-, ß- and γ-transition) in glassy materials. The results suggest that the structural footprint of the ß-transition is related to entropic relaxation with characteristics of a first-order transition. Dynamic mechanical analysis data shows that in the range of the ß-transition, non-reversible structural rearrangements are preferentially activated. The low-temperature γ-transition is mostly triggering reversible deformations and shows a change of slope in the entropic footprint suggesting second-order characteristics.

8.
ACS Appl Mater Interfaces ; 13(36): 42613-42623, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34491728

RESUMO

Contrary to the electrochemical energy storage in Pd nanofilms challenged by diffusion limitations, extensive metal-hydrogen interactions in Pd-based metallic glasses result from their grain-free structure and presence of free volume. This contribution investigates the kinetics of hydrogen-metal interactions in gold-containing Pd-based metallic glass (MG) and crystalline Pd nanofilms for two different pore architectures and nonporous substrates. Fully amorphous MGs obtained by physical vapor deposition (PVD) co-sputtering are electrochemically hydrogenated by chronoamperometry. High-resolution (scanning) transmission electron microscopy and corresponding energy-dispersive X-ray analysis after hydrogenation corroborate the existence of several nanometer-sized crystals homogeneously dispersed throughout the matrix. These nanocrystals are induced by PdHx formation, which was confirmed by depth-resolved X-ray photoelectron spectroscopy, indicating an oxide-free inner layer of the nanofilm. With a larger pore diameter and spacing in the substrate (Pore40), the MG attains a frequency-independent impedance at low frequencies (∼500 Hz) with very high Bode magnitude stability accounting for enhanced ionic diffusion. On the contrary, on a substrate with a smaller pore diameter and spacing (Pore25), the MG shows a larger low-frequency (0.1 Hz) capacitance, linked to enhanced ionic transfer in the near-DC region. Hence, the nanoporosity of amorphous and crystalline metallic materials can be systematically adjusted depending on AC- and DC-type applications.

9.
ACS Appl Mater Interfaces ; 13(20): 23689-23701, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33982559

RESUMO

In transition metal-based alloys, the nonlinearity of the current at large cathodic potentials reduces the credibility of the linear Tafel slopes for the evaluation of electrocatalytic hydrogen activity. High-precision nonlinear fitting at low current densities describing the kinetics of electrochemical reactions due to charge transfer can overcome this challenge. To show its effectiveness, we introduce a glassy alloy with a highly asymmetric energy barrier: amorphous NiP electrocoatings (with different C and O inclusions) via changing the applied DC and pulsed current and NaH2PO2 content. The highest hydrogen evolution reaction (HER) activity with the lowest cathodic transfer coefficient α = 0.130 with high J0 = -1.07 mA cm-2 and the largest surface areas without any porosity are observed for the pulsed current deposition. The calculated α has a direct relation with morphology, composition, chemical state and coating thickness defined by the electrodeposition conditions. Here, a general evaluation criterion with practicality in assessment and high accuracy for electrocatalytic reactions applicable to different metallic alloy systems is presented.

10.
ACS Nano ; 15(2): 2386-2398, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33512138

RESUMO

The structure of matter at the nanoscale, in particular that of amorphous metallic alloys, is of vital importance for functionalization. With the availability of synchrotron radiation, it is now possible to visualize the internal features of metallic samples without physically destroying them. Methods based on computed tomography have recently been employed to explore the local features. Tomographic reconstruction, while it is relatively uncomplicated for crystalline materials, may generate undesired artifacts when applied to featureless amorphous or nanostructured metallic alloys. In this study we show that X-ray diffraction computed nanotomography can provide accurate details of the internal structure of a metallic glass. We demonstrate the power of the method by applying it to a hierarchically phase-separated amorphous sample with a small volume fraction of crystalline inclusions, focusing the X-ray beam to 500 nm and ensuring a sub-micrometer 2D resolution via the number of scans.

11.
Nanoscale ; 12(44): 22586-22595, 2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33135022

RESUMO

Compared to their conventional polycrystalline Pd counterparts, Pd79Au9Si12 (at%) - metallic glass (MG) nanofilm (NF) electrocatalysts offer better methanol oxidation reaction (MOR) in alkaline medium, CO poisoning tolerance and catalyst stability even at high scan rates or high methanol concentrations owing to their amorphous structure without grain boundaries. This study evaluates the influence of scan rate and methanol concentration by cyclic voltammetry, frequency-dependent electrochemical impedance spectroscopy and a related equivalent circuit model at different potentials in Pd-Au-Si amorphous NFs. Structural and compositional differences for the NFs are assessed by high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), energy dispersive X-ray (EDX) mapping and X-ray diffraction (XRD). The ratio of the forward to reverse peak current density ipf/ipb for the MG NFs is ∼2.2 times higher than for polycrystalline Pd NFs, evidencing better oxidation of methanol to carbon dioxide in the forward scan and less poisoning of the electrocatalysts by carbonaceous (e.g. CO, HCO) species. Moreover, the electrochemical circuit model obtained from EIS measurements reveals that the MOR occurring around -100 mV increases the capacitance without any significant change in oxidation resistance, whereas CO2 formation towards lower potentials results in a sharp increase in the capacitance of the Faradaic MOR at the catalyst interface and a slight decrease in the corresponding resistance. These results, together with the high ipf/ipb = 3.37 yielding the minimum amount of carbonaceous species deposited on the thin film during cyclic voltammetry and stability in the alkaline environment, can potentially make these amorphous thin films potential candidates for fuel-cell applications.

12.
Chemistry ; 26(37): 8244-8253, 2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32329916

RESUMO

Nanostructured metallic glass films (NMGF) can exhibit surface and intrinsic effects that give rise to unique physical and chemical properties. Here, a facile synthesis and electrochemical, structural, and morphologic characterization of Pd-Au-Si based MGs of approximately 50 nm thickness supported on Si/SiO2 is reported. Impressively, the maximum total hydrogen charge stored in the Pd-Au-Si nanofilm is equal to that in polycrystalline Pd films with 1 µm thickness in 0.1 m H2 SO4 electrolyte. The same NMGF has a volumetric desorption charge that is more than eight times and 25 % higher than that of polycrystalline PdNF and Pd-Cu-Si NMGF with the same thickness supported on Si/SiO2 , respectively. A significant number of nanovoids originating from PdHx crystals, and an increase in the average interatomic spacing is detected in Pd-Au-Si NMGF by high-resolution TEM. Such a high amount of hydrogen sorption is linked to the unique density fluctuations without any chemical segregation exclusively observed for this NMGF.

13.
Nanomaterials (Basel) ; 10(1)2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31906389

RESUMO

Flash Joule-heating was applied to the Cu47.5Zr47.5Al5 metallic glass for designing fully crystalline metastable nanocomposites consisting of the metastable B2 CuZr and low-temperature equilibrium Cu10Zr7 phases. The onset of crystallization was in situ controlled by monitoring resistivity changes in the samples. The effect of heating rate and annealing time on the volume fraction of the crystalline phases and mechanical properties of the nanocomposites was studied in detail. Particularly, an increase of the heating rate and a decrease of the annealing time lead to a lower number of equilibrium Cu10Zr7 precipitates and an increase of tensile ductility. Tailoring of these non-equilibrium microstructures and mechanical properties may not be possible unless one starts with a fully glassy material that opens new perspectives for designing metastable nanomaterials with unique physical properties.

14.
RSC Adv ; 10(41): 24613-24623, 2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35516196

RESUMO

The single-phase multi-principal-component CoFeMnTiVZr alloy was obtained by rapid solidification and examined by a combination of electrochemical methods and gas-solid reactions. X-ray diffraction and high-resolution transmission electron microscopy analyses reveal a hexagonal Laves-phase structure (type C14). Cyclic voltammetry and electrochemical impedance spectroscopy investigations in the hydrogen absorption/desorption region give insight into the absorption/desorption kinetics and the change in the desorption charge in terms of the applied potential. The thickness of the hydrogen absorption layer obtained by the electrochemical reaction is estimated by high-resolution transmission electron microscopy. The electrochemical hydrogen storage capacity for a given applied voltage is calculated from a series of chronoamperometry and cyclic voltammetry measurements. The selected alloy exhibits good stability for reversible hydrogen absorption and demonstrates a maximum hydrogen capacity of ∼1.9 wt% at room temperature. The amount of hydrogen absorbed in the gas-solid reaction reaches 1.7 wt% at 298 K and 5 MPa, evidencing a good correlation with the electrochemical results.

15.
Materials (Basel) ; 12(4)2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30781436

RESUMO

In this work, the microstructural evolution and magnetic performance of the melt-spun amorphous and amorphous-crystalline Fe26.7Co26.7Ni26.7Si8.9B11.0 high-entropy alloys (HEAs) during crystallization were investigated, respectively. Upon heating fully amorphous ribbons, a metastable BCC supersaturated solid solution together with a little Ni31Si12 crystals first precipitated and then the (Fe,Co)2B crystals formed until the full crystallization was achieved. With further increasing temperature after full crystallization, a polymorphic transformation from a metastable BCC phase to two types of FCC solid solutions occurred. For the amorphous-crystalline HEAs, the dominant crystallization products were the metastable FCC but not BCC crystals. During crystallization, the primary metastable FCC crystals first transform into the metastable BCC crystals and then the newly-generated BCC phase transforms into two types of FCC phases with further increasing temperature. This temperature dependence of the gradual polymorphic transformation results in the change of magnetic properties of the present high-entropy amorphous alloys.

16.
Nat Commun ; 9(1): 3761, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30206224

RESUMO

The authors became aware of a mistake in the original version of this Article. Specifically, where discussing the Curie temperature of the amorphous phase, Tc, in the 'Thermal characterization' section of the Results and in Fig. 2, the authors should have been discussing the Curie temperature of the magnetic crystalline phases T'c. While the Curie temperature of the glass is lower than previously reported, this error does not affect the original discussion or conclusions of the Article. The authors apologize for the confusion caused by this mistake. In addition to this, there were errors in some of the equations in the main text, and the glass composition. A number of changes have been made in both the PDF and HTML versions of the Article to reflect these errors. A full list of these changes is available online.

17.
Nat Commun ; 9(1): 1333, 2018 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-29626189

RESUMO

The large plasticity observed in newly developed monolithic bulk metallic glasses under quasi-static compression raises a question about the contribution of atomic scale effects. Here, nanocrystals on the order of 1-1.5 nm in size are observed within an Fe-based bulk metallic glass using aberration-corrected high-resolution transmission electron microscopy (HRTEM). The accumulation of nanocrystals is linked to the presence of hard and soft zones, which is connected to the micro-scale hardness and elastic modulus confirmed by nanoindentation. Furthermore, we performed systematic simulations of HRTEM images at varying sample thicknesses, and established a theoretical model for the estimation of the shear transformation zone size. The findings suggest that the main mechanism behind the formation of softer regions are the homogenously dispersed nanocrystals, which are responsible for the start and stop mechanism of shear transformation zones and hence, play a key role in the enhancement of mechanical properties.

18.
Sci Rep ; 8(1): 2120, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29391419

RESUMO

The microstructural evolution and crack filling phenomena of (Al81Cu13Si6)100-x(Sn57Bi43) x (x = 0, 1, and 3 at.%) composites was investigated. The Sn and Bi elements were selected by considering the ability for liquid phase separation when combined with Al, Cu, and Si. Because of liquid phase separation, both Al-Cu-Si-rich L1 and Sn-Bi-rich L2 phases separately solidified at different temperatures yielding a trimodal eutectic structure in the cast alloys. The Sn and Bi elements have high mobilities due to the large interface of the eutectic microstructure and tend to strongly diffuse towards higher strained region during heat treatment. Furthermore, the mobile Sn and Bi elements in the Al-Cu-Si-based bimodal eutectic structure evidently fill cracks during warm rolling at 423 K. These results reveal that the developed alloy system has simultaneously dual self-healing characteristics, derived from the both precipitated Sn-Bi-rich particles and low melting agent, and the proposed alloy design based on liquid phase separation provides a novel strategy for creating self-crack filling metallic materials.

19.
Mater Sci Eng C Mater Biol Appl ; 73: 398-405, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28183624

RESUMO

In order to establish a strong cell-material interaction, the surface topography of the implant material plays an important role. This contribution aims to analyze the formation kinetics of nickel and beryllium-free Ti- and Zr-based Bulk Metallic Glasses (BMGs) with potential biomedical applications. The surface patterning of the BMGs is achieved by thermoplastic net-shaping (TPN) into anisotropically etched cavities of silicon chips. The forming kinetics of the BMG alloys is assessed by thermal and mechanical measurements to determine the most suitable processing temperature and time, and load applied. Array of pyramidal micropatterns with a tip resolution down to 50nm is achievable for the Zr-BMG, where the generated hierarchical features are crucial for surface functionalization, acting as topographic cues for cell attachment. The unique processability and intrinsic properties of this new class of amorphous alloys make them competitive with the conventional biomaterials.


Assuntos
Vidro/química , Metais/química , Plásticos/química , Temperatura , Anisotropia , Berílio/química , Varredura Diferencial de Calorimetria , Microscopia Eletrônica de Varredura , Oxirredução , Silício/química , Espectrometria por Raios X , Propriedades de Superfície , Titânio/química , Difração de Raios X , Zircônio/química
20.
Sci Rep ; 6: 27271, 2016 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-27273477

RESUMO

Tailoring the intrinsic length-scale effects in bulk metallic glasses (BMGs) via post-heat treatment necessitates a systematic analyzing strategy. Although various achievements were made in the past years to structurally enhance the properties of different BMG alloys, the influence of short-term sub-glass transition annealing on the relaxation kinetics is still not fully covered. Here, we aim for unraveling the connection between the physical, (thermo)mechanical and structural changes as a function of selected pre-annealing temperatures and time scales with an in-house developed Cu46Zr44Al8Hf2 based BMG alloy. The controlled formation of nanocrystals below 50 nm with homogenous distribution inside the matrix phase via thermal treatment increase the material's resistance to strain softening by almost an order of magnitude. The present work determines the design aspects of metallic glasses with enhanced mechanical properties via nanostructural modifications, while postulating a counter-argument to the intrinsic property degradation accounted for long-term annealing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...