Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 47(45): 16019-16026, 2018 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-30324192

RESUMO

Recent advances on the excited state chemistry of metal-oxygen synthetic complexes based on earth-abundant metals such as copper, cobalt, and manganese are reviewed to show a much enhanced reactivity of the photoexcited states as compared with their relative ground states. Mononuclear copper(ii)-superoxide and dinuclear copper(ii)-peroxo complexes underwent copper-oxygen bond cleavage, dioxygen release, and copper(i)/dioxygen rebinding upon photoexcitation at low temperature. Photoirradiation of the cobalt-oxygen compound [(TAML)CoIV(O)]2- (6) (TAML = tetraamidomacrocyclic ligand) at 5 °C yielded a cobalt-oxygen excited state with 0.6(1) ns lifetime, showing a high reactivity in the bimolecular electron-transfer oxidations of m-xylene and anisole. An extremely long-lived excited state was generated upon photoexcitation of a manganese(iv)-oxo complex binding two Sc(OTf)3 molecules, which enabled the hydroxylation of benzene.

2.
Inorg Chem ; 57(17): 10945-10952, 2018 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-30133298

RESUMO

Photodynamics and electron-transfer reactivity of an excited state derived from an earth-abundant mononuclear cobalt-oxygen complex ground state, [(TAML)CoIV(O)]2- (1; H4TAML = 3,4,8,9-tetrahydro-3,3,6,6,9,9-hexamethyl-1 H-1,4,8,11-benzotetraazo-cyclotridecane-2,5,7,10-(6 H, 11 H)tetrone), prepared by electron-transfer oxidation of Li[(TAML)CoIII]·3(H2O) (2) in a 1:1 acetonitrile/acetone solvent mixture at 5 °C, were investigated using a combination of femtosecond and nanosecond laser absorption spectroscopy. Visible light photoexcitation of 1 (λexc = 393 nm) resulted in generation of the excited state S2* (lifetime: 1.4(4) ps), detected 2 ps after laser irradiation by femtosecond laser spectroscopy. The initially formed excited state S2* converted to a lower-lying excited state, S1* (λmax = 580 nm), with rate constant kc = 7(2) × 1011 s-1 (S2* → S1*). S1* exhibited a 0.6(1) ns lifetime and converted to the initial ground state 1 with rate constant kd = 1.7(3) × 109 s-1 (S1* → 1). The same excited state dynamics was observed when 1 was generated by electron-transfer oxidation of 2 using different one-electron oxidants such as Cu(OTf)2 (OTf- = triflate anion), [Fe(bpy)3]3+ (bpy = 2,2'-bipyridine), and tris(4-bromophenyl)ammoniumyl radical cation (TBPA•+). The electron-transfer reactivity of S1* was probed by nanosecond laser photoexcitation of 1 in the presence of a series of electron donors with different one-electron oxidation potentials ( Eox vs SCE): benzene (2.35 V), toluene (2.20 V), m-xylene (2.02 V), and anisole (1.67 V). The excited state S1* engaged in electron-transfer reactions with m-xylene and anisole to generate π-dimer radical cations of m-xylene and anisole, respectively, observed by nanosecond laser transient absorption spectroscopy, whereas no reactivity was observed toward benzene and toluene. Such differential electron-transfer reactivity depending on the Eox values of electron donors allowed the estimation of the one-electron reduction potential of S1* ( Ered*) as 2.1(1) V vs SCE, which is much higher than that of the ground state ( Ered = 0.86 V vs SCE).

3.
J Am Chem Soc ; 138(49): 15857-15860, 2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27960322

RESUMO

Photocatalytic enantioselective epoxidation of terminal olefins using a mononuclear non-heme chiral manganese catalyst, [(R,R-BQCN)MnII]2+, and water as an oxygen source yields epoxides with relatively high enantioselectivities (e.g., up to 60% enantiomeric excess). A synthetic mononuclear non-heme chiral Mn(IV)-oxo complex, [(R,R-BQCN)MnIV(O)]2+, affords similar enantioselectivities in the epoxidation of terminal olefins under stoichiometric reaction conditions. Mechanistic details of each individual step of the photoinduced catalysis, including formation of the Mn(IV)-oxo intermediate, are discussed on the basis of combined results of laser flash photolysis and other spectroscopic methods.


Assuntos
Alcenos/química , Compostos de Epóxi/síntese química , Manganês/química , Oxigênio/química , Água/química , Catálise , Compostos de Epóxi/química , Estrutura Molecular , Processos Fotoquímicos
4.
Nature ; 540(7633): 453-457, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27871088

RESUMO

Light-induced oxidation of water by photosystem II (PS II) in plants, algae and cyanobacteria has generated most of the dioxygen in the atmosphere. PS II, a membrane-bound multi-subunit pigment protein complex, couples the one-electron photochemistry at the reaction centre with the four-electron redox chemistry of water oxidation at the Mn4CaO5 cluster in the oxygen-evolving complex (OEC). Under illumination, the OEC cycles through five intermediate S-states (S0 to S4), in which S1 is the dark-stable state and S3 is the last semi-stable state before O-O bond formation and O2 evolution. A detailed understanding of the O-O bond formation mechanism remains a challenge, and will require elucidation of both the structures of the OEC in the different S-states and the binding of the two substrate waters to the catalytic site. Here we report the use of femtosecond pulses from an X-ray free electron laser (XFEL) to obtain damage-free, room temperature structures of dark-adapted (S1), two-flash illuminated (2F; S3-enriched), and ammonia-bound two-flash illuminated (2F-NH3; S3-enriched) PS II. Although the recent 1.95 Å resolution structure of PS II at cryogenic temperature using an XFEL provided a damage-free view of the S1 state, measurements at room temperature are required to study the structural landscape of proteins under functional conditions, and also for in situ advancement of the S-states. To investigate the water-binding site(s), ammonia, a water analogue, has been used as a marker, as it binds to the Mn4CaO5 cluster in the S2 and S3 states. Since the ammonia-bound OEC is active, the ammonia-binding Mn site is not a substrate water site. This approach, together with a comparison of the native dark and 2F states, is used to discriminate between proposed O-O bond formation mechanisms.


Assuntos
Cianobactérias/química , Elétrons , Lasers , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/metabolismo , Temperatura , Amônia/química , Amônia/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Cristalização , Manganês/metabolismo , Modelos Moleculares , Oxigênio/metabolismo , Especificidade por Substrato , Água/metabolismo
5.
J Am Chem Soc ; 138(22): 7055-66, 2016 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-27228314

RESUMO

Oxygenation of [Cu2(UN-O(-))(DMF)](2+) (1), a structurally characterized dicopper Robin-Day class I mixed-valent Cu(II)Cu(I) complex, with UN-O(-) as a binucleating ligand and where dimethylformamide (DMF) binds to the Cu(II) ion, leads to a superoxo-dicopper(II) species [Cu(II)2(UN-O(-))(O2(•-))](2+) (2). The formation kinetics provide that kon = 9 × 10(-2) M(-1) s(-1) (-80 °C), ΔH(‡) = 31.1 kJ mol(-1) and ΔS(‡) = -99.4 J K(-1) mol(-1) (from -60 to -90 °C data). Complex 2 can be reversibly reduced to the peroxide species [Cu(II)2(UN-O(-))(O2(2-))](+) (3), using varying outer-sphere ferrocene or ferrocenium redox reagents. A Nernstian analysis could be performed by utilizing a monodiphenylamine substituted ferrocenium salt to oxidize 3, leading to an equilibrium mixture with Ket = 5.3 (-80 °C); a standard reduction potential for the superoxo-peroxo pair is calculated to be E° = +130 mV vs SCE. A literature survey shows that this value falls into the range of biologically relevant redox reagents, e.g., cytochrome c and an organic solvent solubilized ascorbate anion. Using mixed-isotope resonance Raman (rRaman) spectroscopic characterization, accompanied by DFT calculations, it is shown that the superoxo complex consists of a mixture of µ-1,2- (2(1,2)) and µ-1,1- (2(1,1)) isomers, which are in rapid equilibrium. The electron transfer process involves only the µ-1,2-superoxo complex [Cu(II)2(UN-O(-))(µ-1,2-O2(•-))](2+) (2(1,2)) and µ-1,2-peroxo structures [Cu(II)2(UN-O(-))(O2(2-))](+) (3) having a small bond reorganization energy of 0.4 eV (λin). A stopped-flow kinetic study results reveal an outer-sphere electron transfer process with a total reorganization energy (λ) of 1.1 eV between 2(1,2) and 3 calculated in the context of Marcus theory.


Assuntos
Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Cobre/química , Oxigênio/química , Peróxidos/química , Transporte de Elétrons , Estrutura Molecular , Análise Espectral Raman , Superóxidos/química , Termodinâmica
6.
J Am Chem Soc ; 137(50): 15865-74, 2015 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-26651492

RESUMO

Photoexcitation of end-on trans-µ-1,2-peroxodicopper(II) complex [(tmpa)2Cu(II)2(O2)](2+) (1) (λmax = 525 and 600 nm) and side-on µ-η(2):η(2)-peroxodicopper(II) complexes [(N5)Cu(II)2(O2)](2+) (2) and [(N3)Cu(II)2(O2)](2+) (3) at -80 °C in acetone led to one-photon two-electron peroxide-to-dioxygen oxidation chemistry (O2(2-) + hν → O2 + 2e(-)). Interestingly, light excitation of 2 and 3 (having side-on µ-η(2):η(2)-peroxo ligation) led to release of dioxygen, while photoexcitation of 1 (having an end-on trans-1,2-peroxo geometry) did not, even though spectroscopic studies revealed that both reactions proceeded through previously unknown mixed-valent superoxide species: [Cu(II)(O2(•-))Cu(I)](2+) (λmax = 685-740 nm). For 1, this intermediate underwent further fast intramolecular electron transfer to yield an "O2-caged" dicopper(I) adduct, Cu(I)2-O2, and a barrierless stepwise back electron transfer to regenerate 1 occurred. Femtosecond laser excitation of 2 and 3 under the same conditions still led to [Cu(II)(O2(•-))Cu(I)](2+) intermediates that, instead, underwent O2 release with a quantum yield of 0.14 ± 0.1 for 3. Such remarkable differences in reaction pathways likely result from the well-known ligand-derived stability of 2 and 3 vs 1 indicated by ligand-Cu(II/I) redox potentials; (N5)Cu(I) and (N3)Cu(I) complexes are far more stable than (tmpa)Cu(I) species. The fast Cu(I)2/O2 rebinding kinetics was also measured after photoexcitation of 2 and 3, with the results closely tracking those known for the dicopper proteins hemocyanin and tyrosinase, for which the synthetic dicopper(I) precursors [(N5)Cu(I)2](2+) and [(N3)Cu(I)2](2+) and their dioxygen adducts serve as models. The biological relevance of the present findings is discussed, including the potential impact on the solar water splitting process.


Assuntos
Cobre/química , Lasers , Oxigênio/química , Superóxidos/química , Cinética , Ligantes , Fótons
7.
J Am Chem Soc ; 136(4): 1260-3, 2014 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-24428309

RESUMO

Irradiation of the copper(II)-superoxide synthetic complexes [(TMG3tren)Cu(II)(O2)](+) (1) and [(PV-TMPA)Cu(II)(O2)](+) (2) with visible light resulted in direct photogeneration of O2 gas at low temperature (from -40 °C to -70 °C for 1 and from -125 to -135 °C for 2) in 2-methyltetrahydrofuran (MeTHF) solvent. The yield of O2 release was wavelength dependent: λexc = 436 nm, ϕ = 0.29 (for 1), ϕ = 0.11 (for 2), and λexc = 683 nm, ϕ = 0.035 (for 1), ϕ = 0.078 (for 2), which was followed by fast O2-recombination with [(TMG3tren)Cu(I)](+) (3) and [(PV-TMPA)Cu(I)](+) (4). Enthalpic barriers for O2 rebinding to the copper(I) center (∼10 kJ mol(-1)) and for O2 dissociation from the superoxide compound 1 (45 kJ mol(-1)) were determined. TD-DFT studies, carried out for 1, support the experimental results confirming the dissociative character of the excited states formed upon blue- or red-light laser excitation.


Assuntos
Cobre/química , Lasers , Compostos Organometálicos/química , Oxigênio/química , Teoria Quântica , Superóxidos/química , Estrutura Molecular , Fotólise
8.
Inorg Chem ; 51(23): 12603-5, 2012 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-23153187

RESUMO

At -90 °C in acetone, a stable hydroperoxo complex [(BA)Cu(II)OOH](+) (2) (BA, a tetradentate N(4) ligand possessing a pendant -N(H)CH(2)C(6)H(5) group) is generated by reacting [(BA)Cu(II)(CH(3)COCH(3))](2+) with only 1 equiv of H(2)O(2)/Et(3)N. The exceptional stability of 2 is ascribed to internal H-bonding. Species 2 is also generated in a manner not previously known in copper chemistry, by adding 1.5 equiv of H(2)O(2) (no base) to the cuprous complex [(BA)Cu(I)](+). The broad implications for this finding are discussed. Species 2 slowly converts to a µ-1,2-peroxodicopper(II) analogue (3) characterized by UV-vis and resonance Raman spectroscopies. Unlike a close analogue not possessing internal H-bonding, 2 affords no oxidative reactivity with internal or external substrates. However, 2 can be protonated to release H(2)O(2), but only with HClO(4), while 1 equiv Et(3)N restores 2.


Assuntos
Complexos de Coordenação/química , Cobre/química , Peróxido de Hidrogênio/química , Complexos de Coordenação/síntese química , Ligação de Hidrogênio , Modelos Moleculares , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...