Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 9607, 2018 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-29941945

RESUMO

The catalytic activity of nanotubular titanium dioxide films formed during the oxidation of acetone to carbon dioxide under the action of visible light with a wavelength of 450 nm was found to be approximately 2 times higher compared to standard titanium dioxide (Degussa P25). The nanotubular films were grown by the anodization of titanium foil using an original technique. Diffuse reflectance spectra of the films are attributed to enhanced activity in the visible spectrum by the nonstoichiometry of titanium dioxide near the interface between the nanotubular film and the titanium foil substrate.

2.
Faraday Discuss ; 208(0): 255-268, 2018 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-29877526

RESUMO

Model bimetallic Pd-Au/HOPG catalysts have been investigated in the CO oxidation reaction using a combination of NAP XPS and MS techniques. The samples have shown catalytic activity at temperatures above 150 °C. The redistribution of Au and Pd on the surface depending on the reaction conditions has been demonstrated using NAP XPS. The Pd enrichment of the bimetallic particles' surface under reaction gas mixture has been shown. Apparently, CO adsorption induces Pd segregation on the surface. Heating the sample under reaction conditions above 150 °C decomposes the Pd-CO state due to CO desorption and reaction and simultaneous Pd-Au alloy formation on the surface takes place. Cooling back down to RT results in reversible Pd segregation due to Pd-CO formation and the sample becomes inactive. It has been shown that in situ studies are necessary for investigation of the active sites in Pd-Au bimetallic systems.

3.
RSC Adv ; 8(21): 11598-11607, 2018 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35542767

RESUMO

The subject of this study was the content of oxygen in mixed oxides with the spinel structure Mn1.7Ga1.3O4 that were synthesized by coprecipitation and thermal treatment in argon at 600-1200 °C. The study revealed the presence of excess oxygen in "low-temperature" oxides synthesized at 600-800 °C. The occurrence of superstoichiometric oxygen in the structure of Mn1.7Ga1.3O4+δ oxide indicates the formation of cationic vacancies, which shows up as a decreased lattice parameter in comparison with "high-temperature" oxides synthesized at 1000-1200 °C; the additional negative charge is compensated by an increased content of Mn3+ cations according to XPS. The low-temperature oxides containing excess oxygen show a higher catalytic activity in CO oxidation as compared to the high-temperature oxides, the reaction temperature was 275 °C. For oxides prepared at 600 and 800 °C, catalytic activity was 0.0278 and 0.0048 cm3 (CO) per g per s, and further increase in synthesis temperature leads to a drop in activity to zero. The process of oxygen loss by Mn1.7Ga1.3O4+δ was studied in detail by TPR, in situ XRD and XPS. It was found that the hydrogen reduction of Mn1.7Ga1.3O4+δ proceeds in two steps. In the first step, excess oxygen is removed, Mn1.7Ga1.3O4+δ → Mn1.7Ga1.3O4. In the second step, Mn3+ cations are reduced to Mn2+ in the spinel structure with a release of manganese oxide as a single crystal phase, Mn1.7Ga1.3O4 → Mn2Ga1O4 + MnO.

4.
Phys Rev Lett ; 119(2): 026001, 2017 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-28753346

RESUMO

A novel type of temporal and spatial self-organization in a heterogeneous catalytic reaction is described for the first time. Using in situ x-ray photoelectron spectroscopy, gas chromatography, and mass spectrometry, we show that, under certain conditions, self-sustained reaction-rate oscillations arise in the oxidation of propane over Ni foil because of reversible bulk oxidation of Ni to NiO, which can be observed even with the naked eye as chemical waves propagating over the catalyst surface.

5.
Dalton Trans ; 44(35): 15499-507, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26239114

RESUMO

A series of mixed Mn-Zr oxides with different molar ratios Mn/Zr (0.1-9) have been prepared by coprecipitation of manganese and zirconium nitrates and characterized by X-ray diffraction (XRD) and BET methods. It has been found that at concentrations of Mn below 30 at%, the samples are single-phase solid solutions (MnxZr1-xO2-δ) based on a ZrO2 structure. X-ray photoelectron spectroscopy (XPS) measurements showed that manganese in these solutions exists mainly in the Mn(4+) state on the surface. An increase in Mn content mostly leads to an increase in the number of Mn cations in the structure of solid solutions; however, a part of the manganese cations form Mn2O3 and Mn3O4 in the crystalline and amorphous states. The reduction of these oxides with hydrogen was studied by a temperature-programmed reduction technique, in situ XRD, and near ambient pressure XPS in the temperature range from 100 to 650 °C. It was shown that the reduction of the solid solutions MnxZr1-xO2-δ proceeds via two stages. During the first stage, at temperatures between 100 and 500 °C, the Mn cations incorporated into the solid solutions MnxZr1-xO2-δ undergo partial reduction. During the second stage, at temperatures between 500 and 700 °C, Mn cations segregate on the surface of the solid solution. In the samples with more than 30 at% Mn, the reduction of manganese oxides was observed: Mn2O3 → Mn3O4 → MnO.

6.
ACS Appl Mater Interfaces ; 3(11): 4370-3, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21967078

RESUMO

The La(2)O(3)/Si thin films have been deposited by reactive DC magnetron sputtering. Amorphous state of La(2)O(3) layer has been shown by RHEED observation. Top surface chemistry of the a-La(2)O(3) has been evaluated with layer-by-layer depth profiling by ion bombardment and XPS measurements. It was found by core level spectroscopy that the top surface of the a-La(2)O(3) film consists of hydrocarbon admixture, lanthanum carbonate, and hydroxides that formed as a result of contact with air atmosphere. Thickness of this top surface modified layer is below 1 nm for a contact time of ~1.5 h with air at normal conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA