Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Immunother Cancer ; 9(5)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34016720

RESUMO

BACKGROUND: Amplification of the MYCN oncogene is a molecular hallmark of aggressive neuroblastoma (NB), a childhood cancer of the sympathetic nervous system. There is evidence that MYCN promotes a non-inflamed and T-cell infiltration-poor ('cold') tumor microenvironment (TME) by suppressing interferon signaling. This may explain, at least in part, why patients with NB seem to have little benefit from single-agent immune checkpoint blockade (ICB) therapy. Targeting MYCN or its effectors could be a strategy to convert a cold TME into a 'hot' (inflamed) TME and improve the efficacy of ICB therapy. METHODS: NB transcriptome analyses were used to identify epigenetic drivers of a T-cell infiltration-poor TME. Biological and molecular responses of NB cells to epigenetic drugs and interferon (IFN)-γ exposure were assessed by proliferation assays, immunoblotting, ELISA, qRT-PCR, RNA-seq and ChIP-qPCR as well as co-culture assays with T cells. RESULTS: We identified H3K9 euchromatic histone-lysine methyltransferases EHMT2 and EHMT1, also known as G9a and GLP, as epigenetic effectors of the MYCN-driven malignant phenotype and repressors of IFN-γ transcriptional responses in NB cells. EHMT inhibitors enhanced IFN-γ-induced expression of the Th1-type chemokines CXCL9 and CXCL10, key factors of T-cell recruitment into the TME. In MYCN-amplified NB cells, co-inhibition of EZH2 (enhancer of zeste homologue 2), a H3K27 histone methyltransferase cooperating with EHMTs, was needed for strong transcriptional responses to IFN-γ, in line with histone mark changes at CXCL9 and CXCL10 chemokine gene loci. EHMT and EZH2 inhibitor response gene signatures from NB cells were established as surrogate measures and revealed high EHMT and EZH2 activity in MYCN-amplified high-risk NBs with a cold immune phenotype. CONCLUSION: Our results delineate a strategy for targeted epigenetic immunomodulation of high-risk NBs, whereby EHMT inhibitors alone or in combination with EZH2 inhibitors (in particular, MYCN-amplified NBs) could promote a T-cell-infiltrated TME via enhanced Th1-type chemokine expression.


Assuntos
Antineoplásicos/farmacologia , Quimiocinas/genética , Inibidores Enzimáticos/farmacologia , Epigênese Genética/efeitos dos fármacos , Amplificação de Genes , Interferon gama/farmacologia , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Proteína Proto-Oncogênica N-Myc/genética , Neuroblastoma/tratamento farmacológico , Linfócitos T/efeitos dos fármacos , Linhagem Celular Tumoral , Quimiocinas/metabolismo , Técnicas de Cocultura , Regulação Neoplásica da Expressão Gênica , Antígenos de Histocompatibilidade/genética , Antígenos de Histocompatibilidade/metabolismo , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Terapia de Alvo Molecular , Proteína Proto-Oncogênica N-Myc/metabolismo , Neuroblastoma/genética , Neuroblastoma/imunologia , Neuroblastoma/metabolismo , Transdução de Sinais , Linfócitos T/imunologia , Linfócitos T/metabolismo , Transcriptoma , Microambiente Tumoral
2.
Nucleic Acids Res ; 48(21): 12310-12325, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33166396

RESUMO

The Mtq2-Trm112 methyltransferase modifies the eukaryotic translation termination factor eRF1 on the glutamine side chain of a universally conserved GGQ motif that is essential for release of newly synthesized peptides. Although this modification is found in the three domains of life, its exact role in eukaryotes remains unknown. As the deletion of MTQ2 leads to severe growth impairment in yeast, we have investigated its role further and tested its putative involvement in ribosome biogenesis. We found that Mtq2 is associated with nuclear 60S subunit precursors, and we demonstrate that its catalytic activity is required for nucleolar release of pre-60S and for efficient production of mature 5.8S and 25S rRNAs. Thus, we identify Mtq2 as a novel ribosome assembly factor important for large ribosomal subunit formation. We propose that Mtq2-Trm112 might modify eRF1 in the nucleus as part of a quality control mechanism aimed at proof-reading the peptidyl transferase center, where it will subsequently bind during translation termination.


Assuntos
Regulação Fúngica da Expressão Gênica , Metiltransferases/genética , Biogênese de Organelas , Fatores de Terminação de Peptídeos/genética , Subunidades Ribossômicas Maiores de Eucariotos/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , tRNA Metiltransferases/genética , Sítios de Ligação , Biocatálise , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Metiltransferases/química , Metiltransferases/metabolismo , Modelos Moleculares , Terminação Traducional da Cadeia Peptídica , Fatores de Terminação de Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , RNA Ribossômico/biossíntese , RNA Ribossômico/genética , RNA Ribossômico 5,8S/biossíntese , RNA Ribossômico 5,8S/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato , tRNA Metiltransferases/química , tRNA Metiltransferases/metabolismo
3.
Nat Struct Mol Biol ; 25(11): 1035-1046, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30374086

RESUMO

Synchronization of mitochondrial and cytoplasmic translation rates is critical for the maintenance of cellular fitness, with cancer cells being especially vulnerable to translational uncoupling. Although alterations of cytosolic protein synthesis are common in human cancer, compensating mechanisms in mitochondrial translation remain elusive. Here we show that the malignant long non-coding RNA (lncRNA) SAMMSON promotes a balanced increase in ribosomal RNA (rRNA) maturation and protein synthesis in the cytosol and mitochondria by modulating the localization of CARF, an RNA-binding protein that sequesters the exo-ribonuclease XRN2 in the nucleoplasm, which under normal circumstances limits nucleolar rRNA maturation. SAMMSON interferes with XRN2 binding to CARF in the nucleus by favoring the formation of an aberrant cytoplasmic RNA-protein complex containing CARF and p32, a mitochondrial protein required for the processing of the mitochondrial rRNAs. These data highlight how a single oncogenic lncRNA can simultaneously modulate RNA-protein complex formation in two distinct cellular compartments to promote cell growth.


Assuntos
Neoplasias/genética , Neoplasias/metabolismo , Biossíntese de Proteínas/genética , RNA Longo não Codificante/genética , Proteínas Reguladoras de Apoptose/metabolismo , Sítios de Ligação , Compartimento Celular , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Proliferação de Células/genética , Citosol/metabolismo , Exorribonucleases/metabolismo , Células HEK293 , Humanos , Mitocôndrias/metabolismo , Modelos Biológicos , Neoplasias/patologia , Processamento Pós-Transcricional do RNA , RNA Longo não Codificante/metabolismo , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Proteínas de Ligação a RNA/metabolismo
4.
Structure ; 26(3): 416-425.e4, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29429877

RESUMO

Alkaloids isolated from the Amaryllidaceae plants have potential as therapeutics for treating human diseases. Haemanthamine has been studied as a novel anticancer agent due to its ability to overcome cancer cell resistance to apoptosis. Biochemical experiments have suggested that hemanthamine targets the ribosome. However, a structural characterization of its mechanism has been missing. Here we present the 3.1 Å resolution X-ray structure of haemanthamine bound to the Saccharomyces cerevisiae 80S ribosome. This structure reveals that haemanthamine targets the A-site cleft on the large ribosomal subunit rearranging rRNA to halt the elongation phase of translation. Furthermore, we provide evidence that haemanthamine and other Amaryllidaceae alkaloids also inhibit specifically ribosome biogenesis, triggering nucleolar stress response and leading to p53 stabilization in cancer cells. Together with a computer-aided interpretation of existing structure-activity relationships of Amaryllidaceae alkaloids congeners, we provide a rationale for designing molecules with enhanced potencies and reduced toxicities.


Assuntos
Alcaloides de Amaryllidaceae/farmacologia , Antineoplásicos/farmacologia , Neoplasias do Colo/metabolismo , Fenantridinas/farmacologia , Ribossomos/metabolismo , Saccharomyces cerevisiae/metabolismo , Alcaloides de Amaryllidaceae/química , Antineoplásicos/química , Sítios de Ligação , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Cristalografia por Raios X , Células HCT116 , Humanos , Modelos Moleculares , Conformação Molecular , Fenantridinas/química , RNA Ribossômico/química , RNA Ribossômico/metabolismo , Ribossomos/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Relação Estrutura-Atividade , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...