Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Cell ; 28(22): 2958-2977, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28877984

RESUMO

Tumors are fibrotic and characterized by abundant, remodeled, and cross-linked collagen that stiffens the extracellular matrix stroma. The stiffened collagenous stroma fosters malignant transformation of the tissue by increasing tumor cell tension to promote focal adhesion formation and potentiate growth factor receptor signaling through kinase. Importantly, collagen cross-linking requires fibronectin (FN). Fibrotic tumors contain abundant FN, and tumor cells frequently up-regulate the FN receptor α5ß1 integrin. Using transgenic and xenograft models and tunable two- and three-dimensional substrates, we show that FN-bound α5ß1 integrin promotes tension-dependent malignant transformation through engagement of the synergy site that enhances integrin adhesion force. We determined that ligation of the synergy site of FN permits tumor cells to engage a zyxin-stabilized, vinculin-linked scaffold that facilitates nucleation of phosphatidylinositol (3,4,5)-triphosphate at the plasma membrane to enhance phosphoinositide 3-kinase (PI3K)-dependent tumor cell invasion. The data explain why rigid collagen fibrils potentiate PI3K activation to promote malignancy and offer a perspective regarding the consistent up-regulation of α5ß1 integrin and FN in many tumors and their correlation with cancer aggression.


Assuntos
Adesão Celular/fisiologia , Fibronectinas/metabolismo , Integrina alfa5beta1/metabolismo , Animais , Mama/metabolismo , Membrana Celular/metabolismo , Células Cultivadas , Citocinas/metabolismo , Células Epiteliais/metabolismo , Matriz Extracelular/metabolismo , Feminino , Xenoenxertos , Humanos , Integrinas/metabolismo , Camundongos , Camundongos Transgênicos , Neoplasias/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais
2.
Acta Biomater ; 9(8): 7651-61, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23603000

RESUMO

A three-dimensional (3-D) cell culture system that allows control of both substrate stiffness and integrin binding density was created and characterized. This system consisted of two self-assembling peptide (SAP) sequences that were mixed in different ratios to achieve the desired gel stiffness and adhesiveness. The specific peptides used were KFE ((acetyl)-FKFEFKFE-CONH2), which has previously been reported not to support cell adhesion or MVN formation, and KFE-RGD ((acetyl)-GRGDSP-GG-FKFEFKFE-CONH2), which is a similar sequence that incorporates the RGD integrin binding site. Storage modulus for these gels ranged from ∼60 to 6000Pa, depending on their composition and concentration. Atomic force microscopy revealed ECM-like fiber microarchitecture of gels consisting of both pure KFE and pure KFE-RGD as well as mixtures of the two peptides. This system was used to study the contributions of both matrix stiffness and adhesiveness on microvascular network (MVN) formation of endothelial cells and the morphology of human mesenchymal stem cells (hMSC). When endothelial cells were encapsulated within 3-D gel matrices without binding sites, little cell elongation and no network formation occurred, regardless of the stiffness. In contrast, matrices containing the RGD binding site facilitated robust MVN formation, and the extent of this MVN formation was inversely proportional to matrix stiffness. Compared with a matrix of the same stiffness with no binding sites, a matrix containing RGD-functionalized peptides resulted in a ∼2.5-fold increase in the average length of network structure, which was used as a quantitative measure of MVN formation. Matrices with hMSC facilitated an increased number and length of cellular projections at higher stiffness when RGD was present, but induced a round morphology at every stiffness when RGD was absent. Taken together, these results demonstrate the ability to control both substrate stiffness and binding site density within 3-D cell-populated gels and reveal an important role for both stiffness and adhesion on cellular behavior that is cell-type specific.


Assuntos
Células Endoteliais/citologia , Células Endoteliais/fisiologia , Matriz Extracelular/química , Integrinas/química , Microvasos/crescimento & desenvolvimento , Oligopeptídeos/química , Engenharia Tecidual/métodos , Sítios de Ligação , Materiais Biomiméticos/química , Células Cultivadas , Módulo de Elasticidade , Humanos , Teste de Materiais , Mecanotransdução Celular/fisiologia , Neovascularização Fisiológica/fisiologia
3.
Phys Biol ; 8(2): 026013, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21441648

RESUMO

The mechanical properties (e.g. stiffness) of the extracellular matrix (ECM) influence cell fate and tissue morphogenesis and contribute to disease progression. Nevertheless, our understanding of the mechanisms by which ECM rigidity modulates cell behavior and fate remains rudimentary. To address this issue, a number of two and three-dimensional (3D) hydrogel systems have been used to explore the effects of the mechanical properties of the ECM on cell behavior. Unfortunately, many of these systems have limited application because fiber architecture, adhesiveness and/or pore size often change in parallel when gel elasticity is varied. Here we describe the use of ECM-adsorbed, synthetic, self-assembling peptide (SAP) gels that are able to recapitulate normal epithelial acini morphogenesis and gene expression in a 3D context. By exploiting the range of viscoelasticity attainable with these SAP gels, and their ability to recreate native-like ECM fibril topology with minimal variability in ligand density and pore size, we were able to reconstitute normal and tumor-like phenotypes and gene expression patterns in nonmalignant mammary epithelial cells. Accordingly, this SAP hydrogel system presents the first tunable system capable of independently assessing the interplay between ECM stiffness and multi-cellular epithelial phenotype in a 3D context.


Assuntos
Epitélio , Matriz Extracelular , Hidrogéis/química , Morfogênese , Engenharia Tecidual , Fenômenos Biomecânicos , Expressão Gênica , Humanos , Peptídeos , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA