Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Thromb Haemost ; 6(10): 1772-9, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18647220

RESUMO

BACKGROUND: The endocannabinoid 2-arachidonoylglycerol (2-AG) is an endogenous lipid that acts through the activation of G-protein-coupled cannabinoid receptors and plays essential roles in many physiological contexts. In the cardiovascular system 2-AG is generated by both activated endothelial cells and platelets, and participates in the regulation of inflammation and thrombosis. Although human platelets actively metabolize endocannabinoids, 2-AG also binds to platelet surface and leads to cell activation. OBJECTIVE: To investigate the biological consequence of 2-AG interactions with human platelets and to clarify the role of cannabinoid receptors. METHODS: Gel-filtered platelets were stimulated with 2-AG in the presence or absence of various inhibitors. Platelet aggregation and secretion were measured in a lumiaggregometer. Calcium ion movements were measured in FURA-2 loaded platelets. Thromboxane A(2) (TxA(2)) generation was evaluated as Thromboxane B(2) accumulation with a commercial EIA assay. RESULTS: 2-AG induced platelet shape change, aggregation and secretion with a dose-dependent mechanism that required engagement of platelet TxA(2) receptors. 2-AG caused also cytosolic calcium increase; however, it was totally dependent on availability of TxA(2). Indeed 2-AG was able to induce a robust generation of TxA(2) through the cyclooxygenase pathway. Treatment of platelets with inhibitors of monoacylglycerol lipase and fatty acid amide hydrolase did not affect the activation induced by 2-AG. Moreover, neither CB(1) and CB(2) proteins nor CB(1)/CB(2) mRNAs were detected in platelets. CONCLUSIONS: 2-AG can be considered a new physiologic platelet agonist able to induce full platelet activation and aggregation with a non-CB(1)/CB(2) receptor-mediated mechanism.


Assuntos
Ácidos Araquidônicos/farmacologia , Moduladores de Receptores de Canabinoides/farmacologia , Endocanabinoides , Glicerídeos/farmacologia , Ativação Plaquetária/efeitos dos fármacos , Receptores de Canabinoides/fisiologia , Receptores de Tromboxano A2 e Prostaglandina H2/metabolismo , Plaquetas/química , Plaquetas/metabolismo , Cálcio/metabolismo , Células Cultivadas , Humanos , Agregação Plaquetária , Receptores de Tromboxano A2 e Prostaglandina H2/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA