Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Prog Mol Biol Transl Sci ; 207: 355-415, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38942544

RESUMO

Female cancers, which include breast and gynaecological cancers, represent a significant global health burden for women. Despite advancements in research pertinent to unearthing crucial pathological characteristics of these cancers, challenges persist in discovering potential therapeutic strategies. This is further exacerbated by economic burdens associated with de novo drug discovery and clinical intricacies such as development of drug resistance and metastasis. Drug repurposing, an innovative approach leveraging existing FDA-approved drugs for new indications, presents a promising avenue to expedite therapeutic development. Computational techniques, including virtual screening and analysis of drug-target-disease relationships, enable the identification of potential candidate drugs. Integration of diverse data types, such as omics and clinical information, enhances the precision and efficacy of drug repurposing strategies. Experimental approaches, including high-throughput screening assays, in vitro, and in vivo models, complement computational methods, facilitating the validation of repurposed drugs. This review highlights various target mining strategies based on analysis of differential gene expression, weighted gene co-expression, protein-protein interaction network, and host-pathogen interaction, among others. To unearth drug candidates, the technicalities of leveraging information from databases such as DrugBank, STITCH, LINCS, and ChEMBL, among others are discussed. Further in silico validation techniques encompassing molecular docking, pharmacophore modelling, molecular dynamic simulations, and ADMET analysis are elaborated. Overall, this review delves into the exploration of individual case studies to offer a wide perspective of the ever-evolving field of drug repurposing, emphasizing the multifaceted approaches and methodologies employed for the same to confront female cancers.


Assuntos
Reposicionamento de Medicamentos , Humanos , Feminino , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/química , Neoplasias/tratamento farmacológico , Neoplasias/patologia
2.
Prog Mol Biol Transl Sci ; 205: 303-355, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38789185

RESUMO

The conventional theory linking a single gene with a particular disease and a specific drug contributes to the dwindling success rates of traditional drug discovery. This requires a substantial shift focussing on contemporary drug design or drug repurposing, which entails linking multiple genes to diverse physiological or pathological pathways and drugs. Lately, drug repurposing, the art of discovering new/unlabelled indications for existing drugs or candidates in clinical trials, is gaining attention owing to its success rates. The rate-limiting phase of this strategy lies in target identification, which is generally driven through disease-centric and/or drug-centric approaches. The disease-centric approach is based on exploration of crucial biomolecules such as genes or proteins underlying pathological cascades of the disease of interest. Investigating these pathological interplays aids in the identification of potential drug targets that can be leveraged for novel therapeutic interventions. The drug-centric approach involves various strategies such as exploring the mechanism of adverse drug reactions that can unearth potential targets, as these untoward reactions might be considered desirable therapeutic actions in other disease conditions. Currently, artificial intelligence is an emerging robust tool that can be used to translate the aforementioned intricate biological networks to render interpretable data for extracting precise molecular targets. Integration of multiple approaches, big data analytics, and clinical corroboration are essential for successful target mining. This chapter highlights the contemporary strategies steering target identification and diverse frameworks for drug repurposing. These strategies are illustrated through case studies curated from recent drug repurposing research inclined towards neurodegenerative diseases, cancer, infections, immunological, and cardiovascular disorders.


Assuntos
Reposicionamento de Medicamentos , Humanos , Mineração de Dados , Descoberta de Drogas
3.
Front Oncol ; 13: 1183766, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38234400

RESUMO

Oral cancer is one of the 19most rapidly progressing cancers associated with significant mortality, owing to its extreme degree of invasiveness and aggressive inclination. The early occurrences of this cancer can be clinically deceiving leading to a poor overall survival rate. The primary concerns from a clinical perspective include delayed diagnosis, rapid disease progression, resistance to various chemotherapeutic regimens, and aggressive metastasis, which collectively pose a substantial threat to prognosis. Conventional clinical practices observed since antiquity no longer offer the best possible options to circumvent these roadblocks. The world of current cancer research has been revolutionized with the advent of state-of-the-art technology-driven strategies that offer a ray of hope in confronting said challenges by highlighting the crucial underlying molecular mechanisms and drivers. In recent years, bioinformatics and Machine Learning (ML) techniques have enhanced the possibility of early detection, evaluation of prognosis, and individualization of therapy. This review elaborates on the application of the aforesaid techniques in unraveling potential hints from omics big data to address the complexities existing in various clinical facets of oral cancer. The first section demonstrates the utilization of omics data and ML to disentangle the impediments related to diagnosis. This includes the application of technology-based strategies to optimize early detection, classification, and staging via uncovering biomarkers and molecular signatures. Furthermore, breakthrough concepts such as salivaomics-driven non-invasive biomarker discovery and omics-complemented surgical interventions are articulated in detail. In the following part, the identification of novel disease-specific targets alongside potential therapeutic agents to confront oral cancer via omics-based methodologies is presented. Additionally, a special emphasis is placed on drug resistance, precision medicine, and drug repurposing. In the final section, we discuss the research approaches oriented toward unveiling the prognostic biomarkers and constructing prediction models to capture the metastatic potential of the tumors. Overall, we intend to provide a bird's eye view of the various omics, bioinformatics, and ML approaches currently being used in oral cancer research through relevant case studies.

4.
Front Oncol ; 13: 1247399, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38170015

RESUMO

The clinical management of oral cancer is often frequented with challenges that arise from relapse, recurrence, invasion and resistance towards the cornerstone chemo and radiation therapies. The recent conceptual advancement in oncology has substantiated the role of cancer stem cells (CSC) as a predominant player of these intricacies. CSC are a sub-group of tumor population with inherent adroitness to self-renew with high plasticity. During tumor evolution, the structural and functional reprogramming persuades the cancer cells to acquire stem-cell like properties, thus presenting them with higher survival abilities and treatment resistance. An appraisal on key features that govern the stemness is of prime importance to confront the current challenges encountered in oral cancer. The nurturing niche of CSC for maintaining its stemness characteristics is thought to be modulated by complex multi-layered components encompassing neoplastic cells, extracellular matrix, acellular components, circulatory vessels, various cascading signaling molecules and stromal cells. This review focuses on recapitulating both intrinsic and extrinsic mechanisms that impart the stemness. There are contemplating evidences that demonstrate the role of transcription factors (TF) in sustaining the neoplastic stem cell's pluripotency and plasticity alongside the miRNA in regulation of crucial genes involved in the transformation of normal oral mucosa to malignancy. This review illustrates the interplay between miRNA and various known TF of oral cancer such as c-Myc, SOX, STAT, NANOG and OCT in orchestrating the stemness and resistance features. Further, the cross-talks involved in tumor micro-environment inclusive of cytokines, macrophages, extra cellular matrix, angiogenesis leading pathways and influential factors of hypoxia on tumorigenesis and CSC survival have been elucidated. Finally, external factorial influence of oral microbiome gained due to the dysbiosis is also emphasized. There are growing confirmations of the possible roles of microbiomes in the progression of oral cancer. Given this, an attempt has been made to explore the potential links including EMT and signaling pathways towards resistance and stemness. This review provides a spectrum of understanding on stemness and progression of oral cancers at various regulatory levels along with their current therapeutic knowledge. These mechanisms could be exploited for future research to expand potential treatment strategies.

5.
Adv Exp Med Biol ; 1322: 159-193, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34258741

RESUMO

Dengue is an arthropod-borne viral disease common in subtropical and tropical regions. The widespread use of traditional medicines in these regions for dengue fever (DF) has encouraged researchers to explore the therapeutic effect of herbs and their phytochemicals in dengue infection. Phytochemicals such as quercetin, baicalein, luteolin, oxindole alkaloids, celastrol and geraniin have shown significant inhibition of dengue virus in vitro. Many phytoconstituents have better selectivity index supporting their safety profile for future development. However, in vivo studies supporting therapeutic potency for these active phytoconstituents are limited. There is a need for studies translating anti-dengue profile of active phytoconstituents to find successful anti-dengue compounds.


Assuntos
Vírus da Dengue , Dengue , Antivirais/farmacologia , Antivirais/uso terapêutico , Dengue/tratamento farmacológico , Descoberta de Drogas , Humanos , Chumbo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA