Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Physiol ; 239(4): e31203, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38345361

RESUMO

Triple negative breast cancers (TNBC) are an aggressive molecular subtype of breast carcinoma (BC) identified by the lack of receptor expression for estrogen, progesterone, & human epidermal growth factor receptor-2. Lack of tangible drug targets warrants further research in TNBC. LIV1, is a zinc (Zn) transporter known to be overexpressed in few cancer types including BCs. Recently, in the United States of America, FDA approved the use of a new drug targeting LIV1, antibody drug conjugate SGN-LIV1A for treatment of TNBC patients. Though LIV1 also has a role in modulating immune cells by its differential transport of Zn, a correlation between the tumor cell expression of LIV1 and immune cell infiltrations were scantily reported. Further adequate baseline data on LIV1 expression in other populations have not been documented. Our objective was to screen a large Indian cohort of TNBC patient samples for LIV1, categorize the immune cell infiltration using CD4/CD8 expression and correlate the findings with therapy outcomes. Further, we also investigated for LIV1 expression in matched samples of primary & secondary tumors; pre & postchemotherapy in TNBC patients. Results showed an elevated expression of LIV1 in TNBC samples as compared to adjacent normal, the mean Q scores being 183.06 ± 6.39 and 120.78 ± 7.37 (p < 0.0001), respectively. Similarly, LIV1 levels were elevated in secondary tumors than primary & in patient samples postchemotherapy as compared to naïve. In the TNBC cohort, using automated method, cell morphology parameters were computed and analysis showed LIV1 levels were elevated in grade 3 TNBC samples presenting with altered cell morphology parameters namely cell size, cell perimeter, & nucleus size. Thus indicating LIV1 expressing TNBC samples portrayed an aggressive phenotype. Finally, TNBC patients with 3+ staining intensity showed poor survival (4.44 year) as compared to patients with 2+ LIV1 expression (5.47 year), emphasizing that LIV1 expression is a poor prognostic factor in TNBC. In conclusion, the study reports elevated expression of LIV1 in a large Indian TNBC cohort; high expression is a poor prognostic factor and correlated with aggressive disease and indicating the need for LIV1 targeted therapies.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Proteínas de Transporte , Fenótipo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/metabolismo , Linhagem Celular Tumoral , Linfócitos do Interstício Tumoral/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia
2.
Cancers (Basel) ; 14(21)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36358660

RESUMO

Targeting the challenging tumors lacking explicit markers and predictors for chemosensitivity is one of the major impediments of the current cancer armamentarium. Triple-negative breast cancer (TNBC) is an aggressive and challenging molecular subtype of breast cancer, which needs astute strategies to achieve clinical success. The pro-survival B-cell lymphoma 2 (BCL-2) overexpression reported in TNBC plays a central role in deterring apoptosis and is a promising target. Here, we propose three novel BH4 mimetic small molecules, SM396, a covalent binder, and two non-covalent binders, i.e., SM216 and SM949, which show high binding affinity (nM) and selectivity, designed by remodeling the existing BCL-2 chemical space. Our mechanistic studies validate the selectivity of the compounds towards cancerous cells and not on normal cells. A series of functional assays illustrated BCL-2-mediated apoptosis in the tumor cells as a potent anti-cancerous mechanism. Moreover, the compounds exhibited efficacious in vivo activity as single agents in the MDA-MB-231 xenograft model (at nanomolar dosage). Overall, these findings depict SM216, SM396, and SM949 as promising leads, pointing to the clinical translation of these compounds in targeting triple-negative breast cancer.

3.
J Cell Physiol ; 237(11): 4132-4156, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36181695

RESUMO

Breast cancer is one of the leading causes contributing to the global cancer burden. The triple negative breast cancer (TNBC) molecular subtype accounts for the most aggressive type. Despite progression in therapeutic options and prognosis in breast cancer treatment options, there remains a high rate of distant relapse. With advancements in understanding the role of zinc and zinc carriers in the prognosis and treatment of the disease, the scope of precision treatment/targeted therapy has been expanded. Zinc levels and zinc transporters play a vital role in maintaining cellular homeostasis, tumor surveillance, apoptosis, and immune function. This review focuses on the zinc transporter, LIV1, as an essential target for breast cancer prognosis and emerging treatment options. Previous studies give an insight into the role of LIV1 in fulfilling the most important hallmarks of cancer such as apoptosis, metastasis, invasion, and evading the immune system. Normal tissue expression of LIV1 is limited. Higher expression of LIV1 has been linked to Epithelial-Mesenchymal Transition, histological grade of cancer, and early node metastasis. LIV1 was found to be one of the attractive targets in the therapeutic hunt for TNBCs. TNBCs are an immunogenic breast cancer subtype. As zinc transporters are known to serve as the metabolic gatekeepers of immune cells, this review bridges tumor infiltrating lymphocytes, TNBC and LIV1. In addition, the suitability of LIV1 as an antibody-drug conjugate (Seattle genetics [SGN]-LIV1A) target in TNBC, represents a promising strategy for patients. Early clinical trial results reveal that this novel agent reduces tumor burden by inducing mitotic arrest, immunomodulation, and immunogenic cell death, warranting further investigation of SGN-LIV1A in combination with immuno-oncology agents. Priming the patient's immune response in combination with SGN-LIV1A could eventually change the landscape for the TNBC patient population.


Assuntos
Proteínas de Transporte de Cátions , Neoplasias de Mama Triplo Negativas , Humanos , Biomarcadores Tumorais/uso terapêutico , Proteínas de Transporte , Recidiva Local de Neoplasia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Zinco/metabolismo , Proteínas de Transporte de Cátions/antagonistas & inibidores
4.
J Biol Chem ; 298(1): 101406, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34774800

RESUMO

The inflammatory tumor microenvironment has been implicated as a major player fueling tumor progression and an enabling characteristic of cancer, proline, glutamic acid, and leucine-rich protein 1 (PELP1) is a novel nuclear receptor coregulator that signals across diverse signaling networks, and its expression is altered in several cancers. However, investigations to find the role of PELP1 in inflammation-driven oncogenesis are limited. Molecular studies here, utilizing macrophage cell lines and animal models upon stimulation with lipopolysaccharide (LPS) or necrotic cells, showed that PELP1 is an inflammation-inducible gene. Studies on the PELP1 promoter and its mutant identified potential binding of c-Rel, an NF-κB transcription factor subunit, to PELP1 promoter upon LPS stimulation in macrophages. Recruitment of c-Rel onto the PELP1 promoter was validated by chromatin immunoprecipitation, further confirming LPS mediated PELP1 expression through c-Rel-specific transcriptional regulation. Macrophages that overexpress PELP1 induces granulocyte-macrophage colony-stimulating factor secretion, which mediates cancer progression in a paracrine manner. Results from preclinical studies with normal-inflammatory-tumor progression models demonstrated a progressive increase in the PELP1 expression, supporting this link between inflammation and cancer. In addition, animal studies demonstrated the connection of PELP1 in inflammation-directed cancer progression. Taken together, our findings provide the first report on c-Rel-specific transcriptional regulation of PELP1 in inflammation and possible granulocyte-macrophage colony-stimulating factor-mediated transformation potential of activated macrophages on epithelial cells in the inflammatory tumor microenvironment, reiterating the link between PELP1 and inflammation-induced oncogenesis. Understanding the regulatory mechanisms of PELP1 may help in designing better therapeutics to cure various inflammation-associated malignancies.


Assuntos
Proteínas Correpressoras , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Neoplasias/metabolismo , Transativadores , Fatores de Transcrição , Animais , Transformação Celular Neoplásica , Proteínas Correpressoras/biossíntese , Proteínas Correpressoras/genética , Proteínas Correpressoras/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Inflamação/genética , Lipopolissacarídeos/farmacologia , Neoplasias/genética , Neoplasias/patologia , Receptores de Estrogênio/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Microambiente Tumoral
5.
Cell Signal ; 88: 110139, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34464692

RESUMO

Endometriosis is a crippling disease characterized by the presence of endometrium-like tissue or scar outside the uterine cavity, commonly confined to the peritoneal and serosal surfaces of the pelvic organs. 10-15% of women in reproductive age are estimated to be affected by endometriosis. Most of these patients present with infertility and suffer from pelvic pain. The benign disease rarely progresses to malignancy. Regardless of its high prevalence, the pathogenesis of the disease is not fully understood. Treatment options for endometriosis are limited and are often based on a symptomatic approach. The unavailability of proper diagnostic approaches, fewer therapeutic options, and sparse understanding of molecular alterations are responsible for the continued disease burden. Exploring the molecular elements causing the pathogenesis of endometriosis may lead to a number of breakthroughs in the treatment of the illness, such as the discovery of new biomarkers for diagnosis and therapeutic targets that can be a guide to better prognosis and reduced recurrence. The goal of this review is to provide the reader a critical understanding of the disease by summarizing the genetic, immunological, hormonal, and epigenetic deregulations that support the molecular basis for development of endometriotic cyst, with a special focus on the study models needed to analyze these changes in the endometriotic microenvironment.


Assuntos
Endometriose , Neoplasias , Biomarcadores , Endometriose/genética , Endometriose/patologia , Endométrio/patologia , Feminino , Humanos , Neoplasias/patologia , Microambiente Tumoral
6.
J Mol Neurosci ; 71(4): 724-733, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32964396

RESUMO

Malignant astrocytomas presenting in humans of any age group are a challenge to diagnose and treat. Hence, there is a quest for new markers to ascertain their grades and predict disease outcomes. Proline, glutamic acid, and leucine-rich protein 1 (PELP1), a nuclear receptor co-regulator, is an oncogene found in various cancers. We postulate that by screening for PELP1, its correlation with survival outcomes of patients across various grades can indicate a plausible novel diagnostic marker and a potential therapeutic target in gliomas. Immunostaining of 100 cases of astrocytomas for PELP1 was performed on paraffin-embedded sections. Results showed that PELP1 expression increases with higher grades; the mean H-score of PELP1 in grade-I astrocytomas was determined to be 112.3, whereas in grade-IV it was 235.1 (P value = 0.0001). Survival analysis of patients with H-score of 200-300 was only 8.8% and 68.8% in patients with scores of 0-100. PELP1 expression in high-grade astrocytomas is an important factor in determining the outcomes. Graphical abstract Evaluation of molecular expression of PELP1 along with Ki-67 LI signifies a linear increase in its expression pattern among different grades of astrocytomas from low- to high-grade tumors, which can serve as a potential prognostic molecular marker in differentiating various types of astrocytomas in humans.


Assuntos
Astrocitoma/metabolismo , Neoplasias Encefálicas/metabolismo , Proteínas Correpressoras/metabolismo , Ácido Glutâmico/metabolismo , Antígeno Ki-67/metabolismo , Prolina/metabolismo , Fatores de Transcrição/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Astrocitoma/patologia , Neoplasias Encefálicas/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Gradação de Tumores
7.
Gene ; 760: 144991, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32717309

RESUMO

Breast cancer is the most frequently diagnosed cancer in women worldwide. Identifying reliable biomarkers and druggable molecular targets pose to be a significant quest in breast cancer research. p21-activated kinase 1 (PAK1) is a serine/threonine kinase that direct cell motility, cytoskeletal remodelling, and has been shown to function as a downstream regulator for various cancer signalling cascades that promote cell proliferation, apoptosis deregulation and hasten mitotic abnormalities, resulting in tumor formation and progression. The heterogeneity and acquired drug resistance are important factors that challenge the treatment of breast cancer. p21-activated kinase 1 signalling is crucial for activation of the Ras/RAF/MEK/ERK, PI3K/Akt/mTOR and Wnt signalling cascades which regulate cell survival, cell cycle progression, differentiation, and proliferation. A study involving proteogenomics analysis on breast cancer tissues showed the PAK1 as outlier kinase. In addition to this, few outlier molecules were identified specific to subtypes of breast cancer. A few substrates of PAK1 in breast cancer are already known. In this paper, we have discussed a similar approach called Kinase Interacting Substrate Screening (KISS) for the identification of novel oncogenic substrates of p21-activated kinase specific to subtypes of breast cancer. Such high throughput approaches are expected to accelerate the process of identifying novel drug targets and biomarkers.


Assuntos
Neoplasias da Mama/metabolismo , Quinases Ativadas por p21/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Feminino , Humanos , Transdução de Sinais , Quinases Ativadas por p21/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...