Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 11(9)2021 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-34578550

RESUMO

Formulation of promising anticancer herbal drug curcumin as a nanoscale-sized curcumin (nanocurcumin) improved its delivery to cells and organisms both in vitro and in vivo. We report on coupling nanocurcumin with upconversion nanoparticles (UCNPs) using Poly (lactic-co-glycolic Acid) (PLGA) to endow visualisation in the near-infrared transparency window. Nanocurcumin was prepared by solvent-antisolvent method. NaYF4:Yb,Er (UCNP1) and NaYF4:Yb,Tm (UCNP2) nanoparticles were synthesised by reverse microemulsion method and then functionalized it with PLGA to form UCNP-PLGA nanocarrier followed up by loading with the solvent-antisolvent process synthesized herbal nanocurcumin. The UCNP samples were extensively characterised with XRD, Raman, FTIR, DSC, TGA, UV-VIS-NIR spectrophotometer, Upconversion spectrofluorometer, HRSEM, EDAX and Zeta Potential analyses. UCNP1-PLGA-nanocurcumin exhibited emission at 520, 540, 660 nm and UCNP2-PLGA-nanocurmin showed emission at 480 and 800 nm spectral bands. UCNP-PLGA-nanocurcumin incubated with rat glioblastoma cells demonstrated moderate cytotoxicity, 60-80% cell viability at 0.12-0.02 mg/mL marginally suitable for therapeutic applications. The cytotoxicity of UCNPs evaluated in tumour spheroids models confirmed UCNP-PLGA-nanocurcumin therapeutic potential. As-synthesised curcumin-loaded nanocomplexes were administered in tumour-bearing laboratory animals (Lewis lung cancer model) and showed adequate contrast to enable in vivo and ex vivo study of UCNP-PLGA-nanocurcumin bio distribution in organs, with dominant distribution in the liver and lungs. Our studies demonstrate promise of nanocurcumin-loaded upconversion nanoparticles for theranostics applications.

2.
Mikrochim Acta ; 187(6): 317, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32385722

RESUMO

The effect of novel silver nanowire encapsulated NaGdF4:Yb,Er hybrid nanocomposite on the upconversion emission and bioimaging properties has been investigated. The upconvension nanomaterials were synthesised by polyol method in the presence of ethylene glycol, PVP and ethylenediamine. The NaGdF4:Yb,Er-Ag hybrid was formed with upconverting NaGdF4:Yb,Er nanoparticles of size ~ 80 nm and silver nanowires of thickness ~ 30 nm. The surface plasmon induced by the silver ion in the NaGdF4:Yb,Er-Ag nanocomposite resulted an intense upconversion green emission at 520 nm and red emission at 660 nm by NIR diode laser excitation at 980 nm wavelength. The UV-Vis-NIR spectral absorption at 440 nm and 980 nm, the intense Raman vibrational modes and the strong upconversion emission results altogether confirm the localised surface plasmon resonance effect of silver ion in the hybrid nanocomposite. MRI study of both NaGdF4:Yb,Er nanoparticle and NaGdF4:Yb,Er-Ag nanocomposite revealed the T1 relaxivities of 22.13 and 10.39 mM-1 s-1, which are larger than the commercial Gd-DOTA contrast agent of 3.08 mM-1 s-1. CT imaging NaGdF4:Yb,Er-Ag and NaGdF4:Yb,Er respectively showed the values of 53.29 HU L/g and 39.51 HU L/g, which are higher than 25.78 HU L/g of the CT contrast agent Iobitridol. The NaGdF4:Yb,Er and NaGdF4:Yb,Er-Ag respectively demonstrated a negative zeta potential of 54 mV and 55 mV, that could be useful for biological application. The in vitro cytotoxicity of the NaGdF4:Yb,Er tested in HeLa and MCF-7 cancer cell line by MTT assay demonstrated a cell viability of 90 and 80 %, respectively. But, the cell viability of NaGdF4:Yb,Er-Ag slightly decreased to 80 and 78%. The confocal microscopy imaging showed that the UCNPs are effectively up-taken inside the nucleolus of the cancer cells, and it might be useful for NIR laser-assisted phototherapy for cancer treatment. Graphical abstract.


Assuntos
Meios de Contraste/química , Corantes Fluorescentes/química , Fluoretos/química , Gadolínio/química , Nanocompostos/química , Nanofios/química , Linhagem Celular Tumoral , Meios de Contraste/efeitos da radiação , Érbio/química , Érbio/efeitos da radiação , Corantes Fluorescentes/efeitos da radiação , Fluoretos/efeitos da radiação , Gadolínio/efeitos da radiação , Humanos , Imageamento por Ressonância Magnética , Nanopartículas Metálicas/química , Nanopartículas Metálicas/efeitos da radiação , Microscopia Confocal , Microscopia de Fluorescência , Nanocompostos/efeitos da radiação , Nanofios/efeitos da radiação , Prata/química , Prata/efeitos da radiação , Tomografia Computadorizada por Raios X , Itérbio/química , Itérbio/efeitos da radiação
3.
Mater Sci Eng C Mater Biol Appl ; 101: 283-291, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31029322

RESUMO

Nanomaterials with multiple imaging functionalities are nowadays getting tremendous attention due to their several superior features compared to existing contrast agents. By developing a nanomaterial that exhibit multiple functionalities, the possibility to increase the amount of imaging information obtained in a short amount of time is becoming more and more a reality. In this work, we developed a multifunctional nanocrystals (NCs), Na(Gd0.5Lu0.5)F4:Nd3+, that combines multiple rare-earth features as an all-in-one imaging agent comprised of optical imaging, magnetic imaging, and X-ray imaging by utilizing the superparamagnetic features of Gd3+, the high X-ray absorption cross section of Lu3+, and the NIR fluorescence of Nd3+. Morphology, optical properties, and cell viability are shown in detail where the utility of this multifunctional imaging agent was confirmed by optical, X-ray and magnetic imaging experiments. Surface functionalization of the NCs is also presented to highlight the potential application of the NCs as contrast agents in biological imaging.


Assuntos
Materiais Revestidos Biocompatíveis/química , Meios de Contraste/química , Imageamento por Ressonância Magnética , Anidridos Maleicos/química , Nanopartículas/química , Polímeros/química , Espectroscopia de Luz Próxima ao Infravermelho , Animais , Linhagem Celular , Sobrevivência Celular , Macaca mulatta , Nanopartículas Metálicas/toxicidade , Nanopartículas/ultraestrutura , Espectrometria de Fluorescência , Espectroscopia de Infravermelho com Transformada de Fourier , Tomografia Computadorizada por Raios X , Raios X
4.
J Alloys Compd ; 695: 280-285, 2017 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-28781431

RESUMO

Compared to conventional core-shell structures, core-shell free nanoparticles with multiple functionalities offer several advantages such as minimal synthetic complexity and low production cost. In this paper, we present the synthesis and characterization of Nd3+ doped Na(Gd0.5Lu0.5)F4 as a core-shell free nanoparticle system with three functionalities. Nanocrystals with 20 nm diameter, high crystallinity and a narrow particle size distributions were synthesized by the solvothermal method and characterized by various analytical techniques to understand their phase and morphology. Fluorescence characteristics under near infrared (NIR) excitation at 808 nm as well as X-ray excitation were studied to explore their potential in NIR optical and X-ray imaging. At 1.0 mol% Nd concentration, we observed a quantum yield of 25% at 1064 nm emission with 13 W/cm2 excitation power density which is sufficiently enough for imaging applications. Under 130 kVp (5 mA) power of X-ray excitation, Nd3+ doped Na(Gd0.5Lu0.5)F4 shows the characteristic emission bands of Gd3+ and Nd3+ with the strongest emission peak at 1064 nm due to Nd3+. Furthermore, magnetization measurements show that the nanocrystals are paramagnetic in nature with a calculated magnetic moment per particle of ~570 µB at 2T. These preliminary results support the suitability of the present nanophosphor as a multimodal contrast agent with three imaging features viz. optical, magnetic and X-ray.

5.
Appl Phys Lett ; 110(22): 223107, 2017 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-28852226

RESUMO

The growing need for biomedical contrast agents has led to the current development of multi-functional materials such as lanthanide-based nanoparticles (NPs). The optical and magnetic properties these nanoparticles (NPs) possess are important to enhance current biomedical imaging techniques. To increase the optical emissions of the nanoparticles, neodymium (Nd3+) and ytterbium (Yb3+) were introduced into a magnetic host of NaGdF4. The energy transfer between Nd3+ and the Yb3+ was then investigated at multiple concentrations to determine the optimal dopant levels. The NaGdF4:Nd3+,Yb3+ nanoparticles were synthesized through a modified solvothermal method, resulting in rectangular structures, with an average side length of 17.87 ± 4.38 nm. A double dopant concentration of 10% Nd3+ and 4% Yb3+ was found to be optimal, increasing the emission intensity by 71.5% when compared to the widely used Nd3+ single dopant. Decay measurements confirm energy transfer from Nd3+ to Yb3+, with a lifetime shortening from Nd3+ 1064 nm emission and a calculated lifetime of 12.72 ms with 98% efficiency. Despite NaGdF4:Nd3+,Yb3+ NPs showing a slight decrease in their magnetic response at the expense of optimizing optical emission, as it is directly dependent on the Gd3+ concentration, a strong paramagnetic behavior was still observed. These results corroborate that NaGdF4:Nd3+,Yb3+ NPs are viable candidates for multimodal imaging.

6.
Nanotechnology ; 27(38): 385601, 2016 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-27518385

RESUMO

This project aims to provide an insight on the effects of biocompatible polymers on the optical properties and the nanoparticle-cell interaction of KYb2F7:Tm(3+) nanocrystals that exhibit strong near infrared (NIR) fluorescence. KYb2F7:Tm(3+) nanocrystals were synthesized with a diameter of 20-30 nm and surface modified with poly(ethylene glycol), Pluronic(®) F-127, and poly(N-vinylpyrrolidone), due to the associated advantages. Some of these include biocompatibility and biodistribution in the instance of agglomeration and hydrophobicity as well as the addition of a targeting agent and drug loading by further functionalization. Despite the decrease in fluorescence intensity induced by the surface modification, thulium's emission fingerprint was easily detected. Moreover, surface modified KYb2F7:Tm(3+) nanocrystals failed to induce a toxic response on endothelial cells following a 24 h uptake period up to concentrations of 100 µg ml(-1). In vitro toxicity and confocal imaging have demonstrated the versatility of these NIR fluorescence nanocrystals in biomedical imaging, drug delivery, and photodynamic therapy.


Assuntos
Nanopartículas , Sistemas de Liberação de Medicamentos , Polietilenoglicóis , Propriedades de Superfície , Túlio , Distribuição Tecidual
7.
ACS Appl Mater Interfaces ; 7(38): 21465-71, 2015 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-26322519

RESUMO

Molecular imaging is very promising technique used for surgical guidance, which requires advancements related to properties of imaging agents and subsequent data retrieval methods from measured multispectral images. In this article, an upconversion material is introduced for subsurface near-infrared imaging and for the depth recovery of the material embedded below the biological tissue. The results confirm significant correlation between the analytical depth estimate of the material under the tissue and the measured ratio of emitted light from the material at two different wavelengths. Experiments with biological tissue samples demonstrate depth resolved imaging using the rare earth doped multifunctional phosphors. In vitro tests reveal no significant toxicity, whereas the magnetic measurements of the phosphors show that the particles are suitable as magnetic resonance imaging agents. The confocal imaging of fibroblast cells with these phosphors reveals their potential for in vivo imaging. The depth-resolved imaging technique with such phosphors has broad implications for real-time intraoperative surgical guidance.


Assuntos
Diagnóstico por Imagem/métodos , Luminescência , Fenômenos Magnéticos , Animais , Galinhas , Feminino , Imageamento Tridimensional , Glândulas Mamárias Animais/anatomia & histologia , Microscopia Confocal , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Difração de Raios X
8.
Opt Express ; 22(21): 26222-31, 2014 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-25401654

RESUMO

Optical damage experiments were carried out in a series of Holmium doped congruent lithium niobate (Ho:cLN) crystals as a function of dopant concentration and laser intensity. The light induced beam distortion was recorded with a camera and a detector under the pseudo-Z-scan configuration. At 532 nm, strong suppression of the optical damage was observed for the 0.94 mol. % doped crystal. Increased resistance to optical damage was also observed at 488 nm. The suppression of the optical damage is predominantly attributed to the reduction of the Nb antisites due to the holmium doping.


Assuntos
Lentes , Luz , Nióbio/química , Óxidos/química , Refratometria/instrumentação , Espalhamento de Radiação , Cristalização , Desenho de Equipamento , Teste de Materiais
9.
Comput Biol Med ; 43(12): 2278-86, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24290944

RESUMO

Since its invention in the early 1960s, the laser has been used as a tool for surgical, therapeutic, and diagnostic purposes. To achieve maximum effectiveness with the greatest margin of safety it is important to understand the mechanisms of light propagation through tissue and how that light affects living cells. Lasers with novel output characteristics for medical and military applications are too often implemented prior to proper evaluation with respect to tissue optical properties and human safety. Therefore, advances in computational models that describe light propagation and the cellular responses to laser exposure, without the use of animal models, are of considerable interest. Here, a physics-based laser-tissue interaction model was developed to predict the dynamic changes in the spatial and temporal temperature rise during laser exposure to biological tissues. Unlike conventional models, the new approach is grounded on the rigorous electromagnetic theory that accounts for wave interference, polarization, and nonlinearity in propagation using a Maxwell's equations-based technique.


Assuntos
Terapia a Laser , Modelos Biológicos , Pele , Animais , Humanos
10.
Lasers Med Sci ; 28(6): 1559-66, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23380906

RESUMO

The optical properties of human whole blood and blood plasma with and without Y2O3 and Nd³âº:Y2O3 nanoparticles are characterized in the near infrared region at 808 nm using a double integrating sphere technique. Using experimentally measured quantities of diffuse reflectance and diffuse transmittance, a computational analysis was conducted utilizing the Kubelka-Munk, the Inverse Adding Doubling, and Magic Light Kubelka-Munk and Monte Carlo Methods to determine optical properties of the absorption and scattering coefficients. Room temperature absorption and emission spectra were also acquired of Nd³âº:Y2O3 nanoparticles elucidating their utility as biological markers. The emission spectra of Nd³âº:Y2O3 were taken by exciting the nanoparticles before and after entering the whole blood sample. The emission from the 4F(3/2) → 4I(11/2) manifold transition of Nd³âº:Y2O3 nanoparticles readily propagates through the blood sample at excitation of 808 nm and exhibits a shift in relative intensities of the peaks due to differences in scattering. At 808 nm, in both whole blood and plasma samples, a direct relationship was found with absorption coefficient and Y2O3 nanoparticle concentration. Results for the whole blood indicate a small inverse relationship with Y2O3 nanoparticle concentration and scattering coefficient and in contrast a direct relation for the plasma.


Assuntos
Análise Química do Sangue , Sangue/metabolismo , Nanopartículas Metálicas/química , Humanos , Neodímio/química , Fenômenos Ópticos , Plasma/química , Plasma/metabolismo , Espectrometria de Fluorescência , Espectrofotometria , Espectroscopia de Luz Próxima ao Infravermelho , Ítrio/química
11.
J Mater Chem B ; 1(41): 5702-5710, 2013 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25584192

RESUMO

Here we report the synthesis, characterization and application of a multifunctional surface functionalized GdF3:Nd3+ nanophosphor that exhibits efficient near infrared (NIR) fluorescence as well as magnetic properties, which can be utilized for bimodal imaging in medical applications. The nanoparticles are small with an average size of 5 nm and form stable colloids that last for several weeks without settling, enabling the use for several biomedical and photonic applications. Their excellent NIR properties, such as nearly 11 % quantum yield of the 1064 nm emission, make them ideal contrast agents and biomarkers for in vitro and in vivo NIR optical bioimaging. The nanophosphors which were coated with poly(maleic anhydride- alt-1-octadicene) (PMAO) were implemented in cellular imaging and show no significant cellular toxicity for concentrations up to 200 µg ml-1. Furthermore, the incorporation of Gd into the nanocrystalline structure supplies exceptional magnetic properties, making them ideal for use as magnetic resonance imaging (MRI) contrast agents. The utility of these NIR emitting nanoparticles in infrared bioimaging and as contrast agent in magnetic resonance imaging was demonstrated by confocal imaging, magnetic resonance and tissue experiments.

12.
J Mater Chem A Mater ; 1(11): 1561-1572, 2013 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-25191618

RESUMO

While infrared upconversion imaging using halide nanoparticles are so common the search for a very efficient halide free upconverting phosphors is still lacking. In this article we report Gd2O2S:Yb/Er,YbHo,YbTm systems as a very efficient alternative phosphors that show upconversion efficiency comparable or even higher than existing halide phosphors. While the majority of rare earth dopants provide the necessary features for optical imaging, the paramagnetic Gd ion also contributes to the magnetic imaging,thereby resulting in a system with bimodal imaging features. Results from imaging of the nanoparticles together with aggregates of cultured cells have suggested that imaging of the particles in living animals may be possible. In vitro tests revealed no signficant toxicity because no cell death was observed when the nanoparticles were in the presence of growing cells in culture. Measurement of the magnetization of the phosphor shows that the particles are strongly magnetic, thus making them suitable as an MRI agent.

13.
Proc SPIE Int Soc Opt Eng ; 85942013 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-25429335

RESUMO

Nanoparticles doped with rare earth ions for biomedical imaging and infrared photodynamic therapy (IRPDT) have been synthesized, characterized, and compared. Specifically, these nanoparticles utilize two primary modalities: near infrared excitation and emission for imaging, and near infrared upconversion for photodynamic therapy. These nanoparticles are optimized for both their infrared emission and upconversion energy transfer to a photoactive agent conjugated to the surface. Finally, these nanoparticles are tested for toxicity, imaged in cells using the near infrared emission pathway, and used for selective killing of cells through the upconversion driven IRPDT.

14.
Opt Express ; 20(24): 26511-20, 2012 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-23187506

RESUMO

Barium titanate (BaTiO3) is a technologically important material because of its nonlinear properties, such as its strong second harmonic generation and high third order susceptibility. While many nonlinear effects have been extensively studied on the bulk scale, there are still questions regarding the strength of nonlinear effects in nanoparticles. The nonlinear properties of BaTiO3 nanoparticles and nanorods have been studied using the closed aperture z-scan technique. Silver was then grown photochemically on the surface of the BaTiO3 nanoparticles, and it was found that the third order susceptibility increases dramatically.


Assuntos
Simulação por Computador , Luz , Nanopartículas/química , Espalhamento de Radiação , Prata/química , Ressonância de Plasmônio de Superfície/instrumentação , Humanos , Dinâmica não Linear
15.
Lasers Med Sci ; 27(2): 413-22, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21556925

RESUMO

The optical properties of bovine ocular tissues have been determined at laser wavelengths in the near-infrared (NIR) region. The inverse adding doubling (IAD), Kubelka-Munk (KM), and inverse Monte Carlo (IMC) methods were applied to the measured values of the total diffuse transmission, total diffuse reflection, and collimated transmission to determine the optical absorption and scattering coefficients of the bovine cornea, lens and retina from 750 to 1,000 nm using a CW Ti:sapphire laser. The optical properties obtained from these three methods have been compared and are discussed.


Assuntos
Córnea/química , Cristalino/química , Refratometria/métodos , Retina/química , Espalhamento de Radiação , Absorção , Animais , Bovinos , Lasers , Luz , Espectrofotometria Infravermelho
16.
Proc SPIE Int Soc Opt Eng ; 75622010 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-25419446

RESUMO

The near-infrared (NIR) optical properties of human retinal pigmented epithelial (RPE) cells and rare earth nanopowders were studied using a double-integrating sphere setup. The Kubelka-Munk and Inverse Adding-Doubling techniques were applied to obtain absorption and scattering coefficients. These are compared with the coefficients obtained through the Representative Layer Theory described by the Dahm equation. Retinal pigmented epithelial monolayers were cultured from an ARPE19 line in thin cell culture windows, and the nanopowders were pressed into samples of varying thickness. Samples were optically characterized as a function of wavelength. A brief discussion of the shortcomings of existing techniques for computing optical properties when applied to physically thin samples is provided, followed by a comparison between the optical properties of the samples returned by the different techniques.

17.
Lasers Med Sci ; 24(6): 839-47, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19495828

RESUMO

Optical properties of bovine ocular tissues were determined at laser wavelengths in the visible region. The inverse adding doubling (IAD), Kubelka-Munk (KM), and inverse Monte Carlo (IMC) methods were applied to the measured values of the total diffuse transmission, total diffuse reflection, and collimated transmission to determine the optical absorption and scattering coefficients of the bovine cornea, lens and retina at 457.9 nm, 488 nm, and 514.5 nm laser lines from an argon ion laser. The optical properties obtained from these three methods were compared, and their validity is discussed.


Assuntos
Córnea/fisiologia , Córnea/efeitos da radiação , Cristalino/fisiologia , Cristalino/efeitos da radiação , Retina/fisiologia , Retina/efeitos da radiação , Animais , Bovinos , Técnicas In Vitro , Lasers , Modelos Biológicos , Método de Monte Carlo , Fenômenos Ópticos , Espalhamento de Radiação
18.
J Biomed Opt ; 12(5): 054012, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17994900

RESUMO

Studies of bioluminescence in living animals, such as cell-based biosensor applications, require measurement of light at different wavelengths, but accurate light measurement is impeded by absorption by tissues at wavelengths<600 nm. We present a novel approach to this problem--the use of a plastic window in the skin/body wall of mice--that permits measurements of light produced by bioluminescent cells transplanted into the kidney. The cells coexpressed firefly luciferase (FLuc), a vasopressin receptor--Renilla luciferase (RLuc) fusion protein, and a GFP2-beta-arrestin2 fusion protein. Following coadministration of two luciferase substrates, native coelenterazine and luciferin, bioluminescence is measured via the window using fiber optics and a photon counter. Light emission from the two different luciferases, FLuc and RLuc, is readily distinguishable using appropriate optical filters. When coelenterazine 400a is administered, bioluminescence resonance energy transfer (BRET) occurs between the RLuc and GFP2 fusion proteins and is detected by the use of suitable filters. Following intraperitoneal injection of vasopressin, there is a marked increase in BRET. When rapid and accurate measurement of light from internal organs is required, rather than spatial imaging of bioluminescence, the combination of skin/body wall window and fiber optic light measurement will be advantageous.


Assuntos
Tecnologia de Fibra Óptica/instrumentação , Rim/metabolismo , Medições Luminescentes/instrumentação , Proteínas Luminescentes/análise , Proteínas Luminescentes/metabolismo , Pele , Espectrometria de Fluorescência/instrumentação , Animais , Gatos , Células Cultivadas , Desenho de Equipamento , Análise de Falha de Equipamento , Feminino , Tecnologia de Fibra Óptica/métodos , Rim/citologia , Medições Luminescentes/métodos , Masculino , Camundongos , Microscopia de Fluorescência/instrumentação , Microscopia de Fluorescência/métodos , Fibras Ópticas , Espectrometria de Fluorescência/métodos
19.
Lasers Med Sci ; 22(1): 46-52, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17143656

RESUMO

Near infrared characterization of optical properties of aqueous humor and vitreous humor of healthy human and bovine eyes has been performed. The indices of refraction (n) of these ocular tissues were determined using a Michelson interferometer. The total diffuse reflection (R (d)) and total transmission (T (t)) measurements had been taken for individual ocular tissue by using a double-integrating sphere setup and infrared laser diodes. The inverse adding doubling (IAD) computational method based on the diffusion approximation and radiative transport theory was applied to the measured values of n, R (d), and T (t) to calculate the optical absorption and scattering coefficients of the human and bovine ocular tissues. The scattering anisotropy value was determined by iteratively running the IAD method program and a Monte Carlo simulation of light-tissue interaction until the minimum difference in experimental and computed value for T (t) was realized. A comparison between the optical characterization of human and bovine ocular samples was also made.


Assuntos
Humor Aquoso/química , Refratometria/instrumentação , Corpo Vítreo/química , Idoso , Animais , Bovinos , Desenho de Equipamento , Humanos , Lasers , Masculino , Método de Monte Carlo
20.
J Biomed Opt ; 10(5): 051501, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16292945

RESUMO

The optical scattering, absorption, and polarization properties of human retinal tissues are investigated for a number of laser wavelengths in the visible range. The indices of refraction of these tissues are determined by applying Brewster's law. The inverse adding doubling method based on the diffusion approximation and radiative transport theory is applied to the measured values of total diffuse transmission, total diffuse reflection, and index of refraction to determine the optical absorption, scattering, and scattering anisotropy coefficients of the intact retinal tissues from healthy and diseased (neovascularized) human eyes. The polarization studies show that the retinal tissues possess significant intrinsic polarization characteristics, that are more pronounced in diseased tissues than in healthy tissues.


Assuntos
Refratometria/métodos , Retina/patologia , Retina/fisiopatologia , Neovascularização Retiniana/patologia , Neovascularização Retiniana/fisiopatologia , Absorção , Humanos , Técnicas In Vitro , Luz , Valores de Referência , Vasos Retinianos/patologia , Vasos Retinianos/fisiopatologia , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...