Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neuroendocrinol ; 30(2)2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28485080

RESUMO

Proline-, glutamic acid- and leucine-rich protein 1 (PELP1) is an oestrogen receptor (ER) coregulator protein identified by our collaborative group. Work from our laboratory and others has shown that PELP1 is a scaffold protein that interacts with ERs and kinase signalling factors, as well as proteins involved in chromatin remodelling and DNA repair. Its role in mediating 17ß-oestradiol (E2 ) signalling and actions has been studied in detail in cancer cells, although only recently has attention turned to its role in the brain. In this review, we discuss the tissue, cellular and subcellular localisation of PELP1 in the brain. We also discuss recent evidence from PELP1 forebrain-specific knockout mice demonstrating a critical role of PELP1 in mediating both extranuclear and nuclear ER signalling in the brain, as well as E2 -induced neuroprotection, anti-inflammatory effects and regulation of cognitive function. Finally, the PELP1 interactome and unique gene network regulated by PELP1 in the brain is discussed, especially because it provides new insights into PELP1 biology, protein interactions and mechanisms of action in the brain. As a whole, the findings discussed in the present review indicate that PELP1 functions as a critical ER coregulator in the brain to mediate E2 signalling and actions.


Assuntos
Encéfalo/metabolismo , Proteínas Correpressoras/metabolismo , Estrogênios/metabolismo , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo , Animais , Proteínas Correpressoras/genética , Camundongos , Camundongos Knockout , Fatores de Transcrição/genética
2.
Oncogene ; 36(17): 2423-2434, 2017 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-27893719

RESUMO

Glioma stem cells (GSCs) have a central role in glioblastoma (GBM) development and chemo/radiation resistance, and their elimination is critical for the development of efficient therapeutic strategies. Recently, we showed that lysine demethylase KDM1A is overexpressed in GBM. In the present study, we determined whether KDM1A modulates GSCs stemness and differentiation and tested the utility of two novel KDM1A-specific inhibitors (NCL-1 and NCD-38) to promote differentiation and apoptosis of GSCs. The efficacy of KDM1A targeting drugs was tested on purified GSCs isolated from established and patient-derived GBMs using both in vitro assays and in vivo orthotopic preclinical models. Our results suggested that KDM1A is highly expressed in GSCs and knockdown of KDM1A using shRNA-reduced GSCs stemness and induced the differentiation. Pharmacological inhibition of KDM1A using NCL-1 and NCD-38 significantly reduced the cell viability, neurosphere formation and induced apoptosis of GSCs with little effect on differentiated cells. In preclinical studies using orthotopic models, NCL-1 and NCD-38 significantly reduced GSCs-driven tumor progression and improved mice survival. RNA-sequencing analysis showed that KDM1A inhibitors modulate several pathways related to stemness, differentiation and apoptosis. Mechanistic studies showed that KDM1A inhibitors induce activation of the unfolded protein response (UPR) pathway. These results strongly suggest that selective targeting of KDM1A using NCL-1 and NCD-38 is a promising therapeutic strategy for elimination of GSCs.


Assuntos
Apoptose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Glioma/patologia , Histona Desmetilases/antagonistas & inibidores , Células-Tronco Neoplásicas/efeitos dos fármacos , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Transformação Celular Neoplásica , Progressão da Doença , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Camundongos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Transdução de Sinais/efeitos dos fármacos , Análise de Sobrevida , Transcrição Gênica/efeitos dos fármacos
3.
Cell Death Differ ; 21(9): 1409-18, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24786831

RESUMO

Proline-, glutamic acid- and leucine-rich protein-1 (PELP1) is a scaffolding oncogenic protein that functions as a coregulator for a number of nuclear receptors. p53 is an important transcription factor and tumor suppressor that has a critical role in DNA damage response (DDR) including cell cycle arrest, repair or apoptosis. In this study, we found an unexpected role for PELP1 in modulating p53-mediated DDR. PELP1 is phosphorylated at Serine1033 by various DDR kinases like ataxia-telangiectasia mutated, ataxia telangiectasia and Rad3-related or DNAPKc and this phosphorylation of PELP1 is important for p53 coactivation functions. PELP1-depleted p53 (wild-type) breast cancer cells were less sensitive to various genotoxic agents including etoposide, camptothecin or γ-radiation. PELP1 interacts with p53, functions as p53-coactivator and is required for optimal activation of p53 target genes under genomic stress. Overall, these studies established a new role of PELP1 in DDRs and these findings will have future implications in our understanding of PELP1's role in cancer progression.


Assuntos
Proteínas Correpressoras/metabolismo , Dano ao DNA , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular Tumoral , Humanos , Células MCF-7 , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...