Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Methods Cell Biol ; 181: 127-149, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38302235

RESUMO

Telomerase is a reverse transcriptase that consists of the telomerase reverse transcriptase (TERT) protein and the telomerase RNA component TERC which also harbors the template region for telomere synthesis. In its canonical function the enzyme adds single-stranded telomeric hexanucleotides de novo to the ends of linear chromosomes, telomeres, in telomerase-positive cells such as germline, stem- and cancer cells. This potential biochemical activity of telomerase can be measured with the help of a telomerase repeat amplification protocol (TRAP) which often includes a PCR amplification due to the low abundance of telomerase in most cells and tissues. The current chapter describes various TRAP methods to detect telomerase activity (TA) using gel-based methods, its advantages and deficits, how to perform an ELISA-based TRAP assay and how best to interpret its results. Since development of the TRAP assay in 1994, there have been numerous modifications and adaptations of the method from real-time PCR analysis, isothermal amplification and nanotechnology to CRISPR/Cas-based methods which will be briefly mentioned. However, it is not possible to cover all different TRAP methods and thus there is no comprehensiveness claimed by this chapter. Instead, the author describes various aspects of using TRAP assays including required controls, sample preparation, etc. in order to avoid pitfalls and set-backs in applying this rather complex and demanding technique. The TRAP assay is particularly important to support clinical diagnosis of cancer, analyze tumor therapy as well as to evaluate various approaches to inhibit TA as a form of anti-cancer therapy.


Assuntos
Telomerase , Telomerase/genética , Telomerase/análise , Telomerase/metabolismo , Telômero/química , Telômero/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
2.
Int J Mol Sci ; 24(12)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37373080

RESUMO

Seventeen papers published in 2019 and early 2020 demonstrate the ongoing interest and research concerning telomeres and telomerase in aging and cancer [...].


Assuntos
Neoplasias , Telomerase , Humanos , Telomerase/genética , Telomerase/metabolismo , Envelhecimento/genética , Telômero/genética , Telômero/metabolismo , Neoplasias/genética
3.
Stem Cells ; 41(3): 233-241, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36330760

RESUMO

Telomerase, consisting of the protein subunit telomerase reverse transcriptase (TERT) and RNA component TERC, is best known for maintaining and extending human telomeres, the ends of linear chromosomes, in tissues, where it is active, such as stem cells, germline cells, lymphocytes and endothelial cells. This function is considered as canonical. However, various non-canonical functions for the protein part TERT have been discovered. There are multiple such roles which can interfere with several signaling pathways, cancer development and many other processes. One of these non-canonical functions includes shuttling of the TERT protein out of the nucleus upon increased oxidative stress into the cytoplasm and organelles such as mitochondria. Mitochondrial TERT is able to protect cells from oxidative stress, DNA damage and apoptosis although the exact mechanisms are incompletely understood. Recently, a protective role for TERT was described in brain neurons. Here TERT is able to counteract effects of toxic neurodegenerative proteins via changes in gene expression, activation of neurotrophic factors as well as activation of protein degrading pathways such as autophagy. Protein degradation processes are prominently involved in degrading toxic proteins in the brain like amyloid-ß, pathological tau and α-synuclein that are responsible for various neurodegenerative diseases. These new findings can have implications for the development of novel treatment strategies for neurodegenerative diseases. The current review summarizes our knowledge on the role of the telomerase protein TERT in brain function, in particular, under the aspect of age-related neurodegenerative diseases. It also describes various strategies to increase TERT levels in the brain.


Assuntos
Doenças Neurodegenerativas , Telomerase , Humanos , Doenças Neurodegenerativas/genética , Telomerase/metabolismo , Células Endoteliais/metabolismo , Encéfalo/metabolismo , Estresse Oxidativo , Telômero/metabolismo
4.
Neural Regen Res ; 17(11): 2364-2367, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35535872

RESUMO

Most people associate the enzyme telomerase with its role in maintaining telomeres, which is its best-known canonical role. For this important function, two main components are required: the protein telomerase reverse transcriptase (TERT) and the telomerase RNA component. In addition, over the last decades, an ever-growing number of other, non-telomeric, non-canonical functions for the telomerase protein TERT has been established. These reach from tumor promotion to decreasing oxidative stress and apoptosis as well as activating autophagy. These functions are more and more recognized as being important in many tissues and physiological as well as pathological conditions. The role of telomerase in brain development and neuronal cells has been investigated for more than 20 years. However, the non-telomeric role in non-dividing neurons of the brain for telomerase and the TERT-protein has only recently been highlighted by extensive research. Moreover, these developments promoted the suggestion of a beneficial and protective role of TERT against neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. This review summarizes the most important findings in the field of telomerase in neurons and gives an outlook onto possible therapeutic applications of boosting telomerase/TERT levels with telomerase activators to prevent or ameliorate various neurodegenerative diseases.

5.
Exp Gerontol ; 163: 111798, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35390489

RESUMO

Hypertrophy in white adipose tissue (WAT) can result in sustained systemic inflammation, hyperlipidaemia, insulin resistance, and onset of senescence in adipocytes. Inflammation and hypertrophy can be induced in vitro using palmitic acid (PA). WAT adipocytes have innately low ß-oxidation capacity, while inorganic nitrate can promote a beiging phenotype, with promotion of ß-oxidation when cells are exposed to nitrate during differentiation. We hypothesized that treatment of human adipocytes with PA in vitro can induce senescence, which might be attenuated by nitrate treatment through stimulation of ß-oxidation to remove accumulated lipids. Differentiated subcutaneous and omental adipocytes were treated with PA and nitrate and senescence markers were analyzed. PA induced DNA damage and increased p16INK4a levels in both human subcutaneous and omental adipocytes in vitro. However, lipid accumulation and lipid droplet size increased after PA treatment only in subcutaneous adipocytes. Thus, hypertrophy and senescence seem not to be causally associated. Contrary to our expectations, subsequent treatment of PA-induced adipocytes with nitrate did not attenuate PA-induced lipid accumulation or senescence. Instead, we found a significantly beneficial effect of oleic acid (OA) on human subcutaneous adipocytes when applied together with PA, which reduced the DNA damage caused by PA treatment.


Assuntos
Nitratos , Ácido Oleico , Adipócitos , Dano ao DNA , Humanos , Hipertrofia , Inflamação , Nitratos/farmacologia , Ácido Oleico/farmacologia , Palmitatos/farmacologia
6.
Int J Mol Sci ; 23(6)2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35328421

RESUMO

Due to their close connection with senescence, aging, and disease, telomeres and telomerase provide a unique and vital research route for boosting longevity and health span. Despite significant advances during the last three decades, earlier studies into these two biological players were impeded by the difficulty of achieving real-time changes inside living cells. As a result of the clustered regularly interspaced short palindromic repeats (CRISPR)-associated system's (Cas) method, targeted genetic studies are now underway to change telomerase, the genes that govern it as well as telomeres. This review will discuss studies that have utilized CRISPR-related technologies to target and modify genes relevant to telomeres and telomerase as well as to develop targeted anti-cancer therapies. These studies greatly improve our knowledge and understanding of cellular and molecular mechanisms that underlie cancer development and aging.


Assuntos
Neoplasias , Telomerase , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Neoplasias/genética , Neoplasias/terapia , Telomerase/genética , Telomerase/metabolismo , Telômero/genética , Telômero/metabolismo
7.
FEBS J ; 289(12): 3393-3415, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-33866670

RESUMO

The mammalian sirtuin family consists of seven proteins, three of which (SIRT3, SIRT4, and SIRT5) localise specifically within mitochondria and preserve mitochondrial function and homeostasis. Mitochondrial sirtuins are involved in diverse functions such as deacetylation, ADP-ribosylation, demalonylation and desuccinylation, thus affecting various aspects of cell fate. Intriguingly, mitochondrial sirtuins are able to manage these delicate processes with accuracy mediated by crosstalk between the nucleus and mitochondria. Previous studies have provided ample information about their substrates and targets, whereas less is known about their role in cancer and stem cells. Here, we review and discuss recent advances in our understanding of the structural and functional properties of mitochondrial sirtuins, including their targets in cancer and stem cells. These advances could help to improve the understanding of their interplay with signalling cascades and pathways, leading to new avenues for developing novel drugs for sirtuin-related disease treatments. We also highlight the complex network of mitochondrial sirtuins in cancer and stem cells, which may be important in deciphering the molecular mechanism for their activation and inhibition.


Assuntos
Neoplasias , Sirtuínas , Animais , Mamíferos/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Sirtuínas/genética , Sirtuínas/metabolismo , Células-Tronco/metabolismo
8.
Cells ; 10(5)2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-34066027

RESUMO

Mechanotransduction is defined as the ability of cells to sense mechanical stimuli from their surroundings and translate them into biochemical signals. Epidermal keratinocytes respond to mechanical cues by altering their proliferation, migration, and differentiation. In vitro cell culture, however, utilises tissue culture plastic, which is significantly stiffer than the in vivo environment. Current epidermal models fail to consider the effects of culturing keratinocytes on plastic prior to setting up three-dimensional cultures, so the impact of this non-physiological exposure on epidermal assembly is largely overlooked. In this study, primary keratinocytes cultured on plastic were compared with those grown on 4, 8, and 50 kPa stiff biomimetic hydrogels that have similar mechanical properties to skin. Our data show that keratinocytes cultured on biomimetic hydrogels exhibited major changes in cellular architecture, cell density, nuclear biomechanics, and mechanoprotein expression, such as specific Linker of Nucleoskeleton and Cytoskeleton (LINC) complex constituents. Mechanical conditioning of keratinocytes on 50 kPa biomimetic hydrogels improved the thickness and organisation of 3D epidermal models. In summary, the current study demonstrates that the effects of extracellular mechanics on keratinocyte cell biology are significant and therefore should be harnessed in skin research to ensure the successful production of physiologically relevant skin models.


Assuntos
Biomimética , Epiderme/metabolismo , Queratinócitos/citologia , Queratinócitos/metabolismo , Fenômenos Biomecânicos , Técnicas de Cultura de Células , Diferenciação Celular , Linhagem Celular , Núcleo Celular , Proliferação de Células , Células Cultivadas , Citoesqueleto/metabolismo , Humanos , Hidrogéis/química , Técnicas In Vitro , Mecanotransdução Celular , Lâmina Nuclear/metabolismo , Osmose , Pressão Osmótica , Pressão , Pele/patologia , Estresse Mecânico
9.
Biomedicines ; 9(5)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33946850

RESUMO

Telomerase is an enzyme that in its canonical function extends and maintains telomeres, the ends of chromosomes. This reverse transcriptase function is mainly important for dividing cells that shorten their telomeres continuously. However, there are a number of telomere-independent functions known for the telomerase protein TERT (Telomerase Reverse Transcriptase). This includes the shuttling of the TERT protein from the nucleus to mitochondria where it decreases oxidative stress, apoptosis sensitivity and DNA damage. Recently, evidence has accumulated on a protective role of TERT in brain and postmitotic neurons. This function might be able to ameliorate the effects of toxic proteins such as amyloid-ß, pathological tau and α-synuclein involved in neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). However, the protective mechanisms of TERT are not clear yet. Recently, an activation of autophagy as an important protein degradation process for toxic neuronal proteins by TERT has been described. This review summarises the current knowledge about the non-canonical role of the telomerase protein TERT in brain and shows its potential benefit for the amelioration of brain ageing and neurodegenerative diseases such as AD and PD. This might form the basis for the development of novel strategies and therapies against those diseases.

10.
Biomarkers ; 26(5): 425-433, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33843382

RESUMO

Background: Iron-overload is a well-known cause for the development of chronic liver diseases and known to induce DNA damage.Material and methods: The protective effect of argan oil (AO) from the Argania spinosa fruit and olive oil (OO) (6% AO or OO for 28 days) was evaluated on a mouse model of iron overload (3.5mg Fe2+/liter) and in human fibroblasts where DNA damage was induced via culture under hyperoxia (40% oxygen).Results: Iron treatment induced DNA damage in liver tissue while both oils were able to decrease it. We confirmed this effect in vitro in MRC-5 fibroblasts under hyperoxia. A cell-free ABTS assay suggested that improvement of liver toxicity by both oils might depend on a high content in tocopherol, phytosterol and polyphenol compounds known for their antioxidant potential. The antioxidant effect of AO was confirmed in fibroblasts by reduced intracellular peroxide levels after hyperoxia. However, we could not find a significant decrease of genes encoding pro-inflammatory cytokines (TNFα, IL-6, IL-1ß, COX-2) or senescence markers (p16 and p21) for the oils in mouse liver.Conclusion: We found a striking effect of AO by ameliorating DNA damage after iron overload in a mouse liver model and in human fibroblasts by hyperoxia adding compelling evidence to the protective mechanisms of AO and OO.


Assuntos
Antioxidantes/farmacologia , Dano ao DNA/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Sobrecarga de Ferro/tratamento farmacológico , Fígado/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Óleos de Plantas/farmacologia , Animais , Hipóxia Celular , Linhagem Celular , Modelos Animais de Doenças , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Mediadores da Inflamação/metabolismo , Sobrecarga de Ferro/metabolismo , Sobrecarga de Ferro/patologia , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Azeite de Oliva/farmacologia
11.
EMBO J ; 40(9): e106048, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33764576

RESUMO

Cellular senescence is characterized by an irreversible cell cycle arrest as well as a pro-inflammatory phenotype, thought to contribute to aging and age-related diseases. Neutrophils have essential roles in inflammatory responses; however, in certain contexts their abundance is associated with a number of age-related diseases, including liver disease. The relationship between neutrophils and cellular senescence is not well understood. Here, we show that telomeres in non-immune cells are highly susceptible to oxidative damage caused by neighboring neutrophils. Neutrophils cause telomere dysfunction both in vitro and ex vivo in a ROS-dependent manner. In a mouse model of acute liver injury, depletion of neutrophils reduces telomere dysfunction and senescence. Finally, we show that senescent cells mediate the recruitment of neutrophils to the aged liver and propose that this may be a mechanism by which senescence spreads to surrounding cells. Our results suggest that interventions that counteract neutrophil-induced senescence may be beneficial during aging and age-related disease.


Assuntos
Lesão Pulmonar Aguda/imunologia , Tetracloreto de Carbono/efeitos adversos , Neutrófilos/citologia , Espécies Reativas de Oxigênio/metabolismo , Encurtamento do Telômero , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Animais , Linhagem Celular , Senescência Celular , Técnicas de Cocultura , Modelos Animais de Doenças , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Masculino , Camundongos , Neutrófilos/metabolismo , Estresse Oxidativo , Comunicação Parácrina
12.
Cancers (Basel) ; 13(2)2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33450922

RESUMO

Dyskerin is a core-component of the telomerase holo-enzyme, which elongates telomeres. Telomerase is involved in endometrial epithelial cell proliferation. Most endometrial cancers (ECs) have high telomerase activity; however, dyskerin expression in human healthy endometrium or in endometrial pathologies has not been investigated yet. We aimed to examine the expression, prognostic relevance, and functional role of dyskerin in human EC. Endometrial samples from a cohort of 175 women were examined with immunohistochemistry, immunoblotting, and qPCR. The EC cells were transfected with Myc-DDK-DKC1 plasmid and the effect of dyskerin overexpression on EC cell proliferation was assessed by flow cytometry. Human endometrium expresses dyskerin (DKC1) and dyskerin protein levels are significantly reduced in ECs when compared with healthy postmenopausal endometrium. Low dyskerin immunoscores were potentially associated with worse outcomes, suggesting a possible prognostic relevance. Cancer Genome Atlas (TCGA) ECs dataset (n = 589) was also interrogated. The TCGA dataset further confirmed changes in DKC1 expression in EC with prognostic significance. Transient dyskerin overexpression had a negative effect on EC cell proliferation. Our data demonstrates a role for dyskerin in normal endometrium for the first time and confirms aberrant expression with possible prognostic relevance in EC. Interventions aimed at modulating dyskerin levels may provide novel therapeutic options in EC.

13.
Eur J Clin Nutr ; 75(8): 1176-1192, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33514872

RESUMO

Ageing is a multifactorial process associated with reduced function and increased risk of morbidity and mortality. Recently, nine cellular and molecular hallmarks of ageing have been identified, which characterise the ageing process, and collectively, may be key determinants of the ageing trajectory. These include genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion and altered intercellular communication. Healthier dietary patterns reduce the risk of age-related diseases and increase longevity and may influence positively one or more of these hallmarks. The Mediterranean dietary pattern (MedDiet) is a plant-based eating pattern that was typical of countries such as Greece, Spain, and Italy pre-globalisation of the food system and which is associated with better health during ageing. Here we review the potential effects of a MedDiet on each of the nine hallmarks of ageing, and provide evidence that the MedDiet as a whole, or individual elements of this dietary pattern, may influence each hallmark positively-effects which may contribute to the beneficial effects of this dietary pattern on age-related disease risk and longevity. We also highlight potential avenues for future research.


Assuntos
Dieta Mediterrânea , Envelhecimento , Senescência Celular , Instabilidade Genômica , Humanos , Telômero
14.
Prog Neurobiol ; 199: 101953, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33188884

RESUMO

Protective effects of the telomerase protein TERT have been shown in neurons and brain. We previously demonstrated that TERT protein can accumulate in mitochondria of Alzheimer's disease (AD) brains and protect from pathological tau in primary mouse neurons. This prompted us to employ telomerase activators in order to boost telomerase expression in a mouse model of Parkinson's disease (PD) overexpressing human wild type α-synuclein. Our aim was to test whether increased Tert expression levels were able to ameliorate PD symptoms and to activate protein degradation. We found increased Tert expression in brain for both activators which correlated with a substantial improvement of motor functions such as gait and motor coordination while telomere length in the analysed region was not changed. Interestingly, only one activator (TA-65) resulted in a decrease of reactive oxygen species from brain mitochondria. Importantly, we demonstrate that total, phosphorylated and aggregated α-synuclein were significantly decreased in the hippocampus and neocortex of activator-treated mice corresponding to enhanced markers of autophagy suggesting an improved degradation of toxic alpha-synuclein. We conclude that increased Tert expression caused by telomerase activators is associated with decreased α-synuclein protein levels either by activating autophagy or by preventing or delaying impairment of degradation mechanisms during disease progression. This encouraging preclinical data could be translated into novel therapeutic options for neurodegenerative disorders such as PD.


Assuntos
Doença de Parkinson , alfa-Sinucleína/metabolismo , Animais , Autofagia , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Doença de Parkinson/genética , Telomerase/genética , alfa-Sinucleína/genética
15.
Biomedicines ; 8(12)2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33317189

RESUMO

Telomeres protect chromosomal ends and they are maintained by the specialised enzyme, telomerase. Endometriosis is a common gynaecological disease and high telomerase activity and higher hTERT levels associated with longer endometrial telomere lengths are characteristics of eutopic secretory endometrial aberrations of women with endometriosis. Our ex-vivo study examined the levels of hTERC and DKC1 RNA and dyskerin protein levels in the endometrium from healthy women and those with endometriosis (n = 117). The in silico study examined endometriosis-specific telomere- and telomerase-associated gene (TTAG) transcriptional aberrations of secretory phase eutopic endometrium utilising publicly available microarray datasets. Eutopic secretory endometrial hTERC levels were significantly increased in women with endometriosis compared to healthy endometrium, yet dyskerin mRNA and protein levels were unperturbed. Our in silico study identified 10 TTAGs (CDKN2A, PML, ZNHIT2, UBE3A, MCCC2, HSPC159, FGFR2, PIK3C2A, RALGAPA1, and HNRNPA2B1) to be altered in mid-secretory endometrium of women with endometriosis. High levels of hTERC and the identified other TTAGs might be part of the established alteration in the eutopic endometrial telomerase biology in women with endometriosis in the secretory phase of the endometrium and our data informs future research to unravel the fundamental involvement of telomerase in the pathogenesis of endometriosis.

16.
Int J Mol Sci ; 21(22)2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33217925

RESUMO

Telomeres are transcribed as long non-coding RNAs called TERRAs (Telomeric repeat containing RNA) that participate in a variety of cellular regulatory functions. High telomerase activity (TA) is associated with endometrial cancer (EC). This study aimed to examine the levels of three TERRAs, transcribed at chromosomes 1q-2q-4q-10q-13q-22q, 16p and 20q in healthy (n = 23) and pathological (n = 24) human endometrium and to examine their association with cellular proliferation, TA and telomere lengths. EC samples demonstrated significantly reduced levels of TERRAs for Chromosome 16p (Ch-16p) (p < 0.002) and Chromosome 20q (Ch-20q) (p = 0.0006), when compared with the postmenopausal samples. No significant correlation was found between TERRA levels and TA but both Ch-16p and Ch-20q TERRA levels negatively correlated with the proliferative marker Ki67 (r = -0.35, p = 0.03 and r = -0.42, p = 0.01 respectively). Evaluation of single telomere length analysis (STELA) at XpYp telomeres demonstrated a significant shortening in EC samples when compared with healthy tissues (p = 0.002). We detected TERRAs in healthy human endometrium and observed altered individual TERRA-specific levels in malignant endometrium. The negative correlation of TERRAs with cellular proliferation along with their significant reduction in EC may suggest a role for TERRAs in carcinogenesis and thus future research should explore TERRAs as potential therapeutic targets in EC.


Assuntos
Carcinogênese/metabolismo , Cromossomos Humanos/metabolismo , Neoplasias do Endométrio/metabolismo , RNA Longo não Codificante/biossíntese , RNA Neoplásico/biossíntese , Telômero/metabolismo , Transcrição Gênica , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinogênese/genética , Carcinogênese/patologia , Cromossomos Humanos/genética , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/patologia , Endométrio/metabolismo , Endométrio/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , RNA Longo não Codificante/genética , RNA Neoplásico/genética , Telômero/genética , Telômero/patologia , Homeostase do Telômero
17.
PLoS One ; 15(1): e0227616, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31923255

RESUMO

BACKGROUND: Non-ST elevation acute coronary syndrome (NSTEACS) occurs more frequently in older patients with an increased occurrence of recurrent cardiac events following the index presentation. Telomeres are structures consisting of repeated DNA sequences as associated shelterin proteins at the ends of chromosomes. We aim to determine whether telomere length (TL) and telomerase activity (TA) predicted poor outcomes in older patients presenting with NSTEACS undergoing invasive care. METHOD: Older patients undergoing invasive management for NSTEACS were recruited to the ICON-1 biomarker study (NCT01933581). Peripheral blood mononuclear cells (PBMC) were recovered on 153 patients. DNA was isolated and mean TL was measured by quantitative PCR expressed as relative T (telomere repeat copy number) to S (single copy gene number) ratio (T/S ratio), and a telomere repeat amplification assay was used to assess TA during index presentation with NSTEACS. Primary clinical outcomes consisted of death, myocardial infarction (MI), unplanned revascularisation, stroke and significant bleeding recorded at 1 year. TL and TA were divided into tertile groups for analysis. Cox proportional hazards regression was performed. Ordinal regression was performed to evaluate the relationship between TL and TA and traditional cardiovascular risk factors at baseline. RESULTS: 298 patients were recruited in the ICON-1 study of which 153 had PBMC recovered. The mean age was 81.0 ± 4.0 years (64% male). Mean telomere length T/S ratio was 0.47 ± 0.25 and mean TA was 1.52 ± 0.61 units. The primary composite outcome occurred in 44 (28.8%) patients. There was no association between short TL or low TA and incidence of the primary composite outcome (Hazard Ratio [HR] 1.50, 95% Confidence Interval [CI] 0.68-3.34, p = 0.32 and HR 1.33, 95% CI 0.52-3.36, p = 0.51 respectively). CONCLUSION: TL and TA are not found to be associated with the incidence of adverse outcomes in older patients presenting with NSTEACS undergoing invasive care. CLINICAL TRIAL REGISTRATION: URL: https://www.clinicaltrials.gov Unique identifier: NCT01933581.


Assuntos
Infarto do Miocárdio sem Supradesnível do Segmento ST/genética , Homeostase do Telômero/genética , Telômero/genética , Síndrome Coronariana Aguda/sangue , Síndrome Coronariana Aguda/genética , Síndrome Coronariana Aguda/metabolismo , Idoso , Idoso de 80 Anos ou mais , Angiografia Coronária , Feminino , Hemorragia/complicações , Humanos , Incidência , Leucócitos Mononucleares/metabolismo , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio/complicações , Infarto do Miocárdio sem Supradesnível do Segmento ST/sangue , Infarto do Miocárdio sem Supradesnível do Segmento ST/metabolismo , Prognóstico , Modelos de Riscos Proporcionais , Fatores de Risco , Acidente Vascular Cerebral/complicações , Telomerase/genética , Telômero/metabolismo , Homeostase do Telômero/fisiologia , Resultado do Tratamento
18.
J Parkinsons Dis ; 10(1): 193-206, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31868677

RESUMO

BACKGROUND: Cognitive decline is a frequent complication of Parkinson's disease (PD) and the identification of predictive biomarkers for it would help in its management. OBJECTIVE: Our aim was to analyse whether senescence markers (telomere length, p16 and p21) or their change over time could help to better predict cognitive and motor progression of newly diagnosed PD patients. We also compared these senescence markers to previously analysed markers of inflammation for the same purpose. METHODS: This study examined the association of blood-derived markers of cell senescence and inflammation with motor and cognitive function over time in an incident PD cohort (the ICICLE-PD study). Participants (154 newly diagnosed PD patients and 99 controls) underwent physical and cognitive assessments over 36 months of follow up. Mean leukocyte telomere length and the expression of senescence markers p21 and p16 were measured at two time points (baseline and 18 months). Additionally, we selected five inflammatory markers from existing baseline data. RESULTS: We found that PD patients had shorter telomeres at baseline and 18 months compared to age-matched healthy controls which also correlated to dementia at 36 months. Baseline p16 levels were associated with faster rates of motor and cognitive decline over 36 months in PD cases, while a simple inflammatory summary score at baseline best predicted cognitive score over this same time period in PD patients. CONCLUSION: Our study suggests that both inflammatory and senescence markers (p16) are valuable predictors of clinical progression in PD patients.


Assuntos
Envelhecimento/sangue , Disfunção Cognitiva/diagnóstico , Progressão da Doença , Inflamação/diagnóstico , Doença de Parkinson/diagnóstico , Encurtamento do Telômero , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/fisiopatologia , Inibidor p16 de Quinase Dependente de Ciclina/sangue , Inibidor de Quinase Dependente de Ciclina p21/sangue , Demência , Feminino , Inquéritos Epidemiológicos , Humanos , Inflamação/sangue , Inflamação/etiologia , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/complicações , Doença de Parkinson/fisiopatologia , Prognóstico
19.
Int J Mol Sci ; 21(1)2019 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-31861522

RESUMO

Telomerase is best known for its function in maintaining telomeres but has also multiple additional, non-canonical functions. One of these functions is the decrease of oxidative stress and DNA damage due to localisation of the telomerase protein TERT into mitochondria under oxidative stress. However, the exact molecular mechanisms behind these protective effects are still not well understood. We had shown previously that overexpression of human telomerase reverse transcriptase (hTERT) in human fibroblasts results in a decrease of mitochondrial DNA (mtDNA) damage after oxidative stress. MtDNA damage caused by oxidative stress is removed via the base excision repair (BER) pathway. Therefore we aimed to analyse whether telomerase is able to improve this pathway. We applied different types of DNA damaging agents such as irradiation, arsenite treatment (NaAsO2) and treatment with hydrogen peroxide (H2O2). Using a PCR-based assay to evaluate mtDNA damage, we demonstrate that overexpression of hTERT in MRC-5 fibroblasts protects mtDNA from H2O2 and NaAsO2 induced damage, compared with their isogenic telomerase-negative counterparts. However, overexpression of hTERT did not seem to increase repair of mtDNA after oxidative stress, but promoted increased levels of manganese superoxide dismutase (MnSOD) and forkhead-box-protein O3 (FoxO3a) proteins during incubation in serum free medium as well as under oxidative stress, while no differences were found in protein levels of catalase. Together, our results suggest that rather than interfering with mitochondrial DNA repair mechanisms, such as BER, telomerase seems to increase antioxidant defence mechanisms to prevent mtDNA damage and to increase cellular resistance to oxidative stress. However, the result has to be reproduced in additional cellular systems in order to generalise our findings.


Assuntos
Meios de Cultura Livres de Soro/química , Mitocôndrias/genética , Superóxido Dismutase/genética , Telomerase/genética , Arsenitos/efeitos adversos , Células Cultivadas , Reparo do DNA , DNA Mitocondrial/genética , Proteína Forkhead Box O3/metabolismo , Humanos , Peróxido de Hidrogênio/efeitos adversos , Mitocôndrias/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Telomerase/metabolismo , Raios Ultravioleta/efeitos adversos , Regulação para Cima
20.
Front Oncol ; 9: 344, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31157162

RESUMO

Telomeres at the termini of human chromosomes are shortened with each round of cell division due to the "end replication problem" as well as oxidative stress. During carcinogenesis, cells acquire or retain mechanisms to maintain telomeres to avoid initiation of cellular senescence or apoptosis and halting cell division by critically short telomeres. The unique reverse transcriptase enzyme complex, telomerase, catalyzes the maintenance of telomeres but most human somatic cells do not have sufficient telomerase activity to prevent telomere shortening. Tissues with high and prolonged replicative potential demonstrate adequate cellular telomerase activity to prevent telomere erosion, and high telomerase activity appears to be a critical feature of most (80-90%) epithelial cancers, including endometrial cancer. Endometrial cancers regress in response to progesterone which is frequently used to treat advanced endometrial cancer. Endometrial telomerase is inhibited by progestogens and deciphering telomere and telomerase biology in endometrial cancer is therefore important, as targeting telomerase (a downstream target of progestogens) in endometrial cancer may provide novel and more effective therapeutic avenues. This review aims to examine the available evidence for the role and importance of telomere and telomerase biology in endometrial cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...