Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 27(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36296707

RESUMO

The reliance of tumor cells on aerobic glycolysis is one of the emerging hallmarks of cancer. Pyruvate kinase M2 (PKM2), an important enzyme of glycolytic pathway, is highly expressed in a number of cancer cells. Tumor cells heavily depend on PKM2 to fulfill their divergent energetic and biosynthetic requirements, suggesting it as novel drug target for cancer therapies. Based on this context, we performed enzymatic-assay-based screening of the in-house phenolic compounds library for the identification of PKM2 inhibitors. This screening identified silibinin, curcumin, resveratrol, and ellagic acid as potential inhibitors of PKM2 with IC50 values of 0.91 µM, 1.12 µM, 3.07 µM, and 4.20 µM respectively. For the determination of Ki constants and the inhibition type of hit compounds, Lineweaver-Burk graphs were plotted. Silibinin and ellagic acid performed the competitive inhibition of PKM2 with Ki constants of 0.61 µM and 5.06 µM, while curcumin and resveratrol were identified as non-competitive inhibitors of PKM2 with Ki constants of 1.20 µM and 7.34 µM. The in silico screening of phenolic compounds against three binding sites of PKM2 provided insight into the binding pattern and functionally important amino residues of PKM2. Further, the evaluation of cytotoxicity via MTT assay demonstrated ellagic acid as potent inhibitor of cancer cell growth (IC50 = 20 µM). These results present ellagic acid, silibinin, curcumin, and resveratrol as inhibitors of PKM2 to interrogate metabolic reprogramming in cancer cells. This study has also provided the foundation for further research to validate the potential of identified bioactive entities for PKM2 targeted-cancer therapies.


Assuntos
Curcumina , Leucemia Mieloide Aguda , Humanos , Piruvato Quinase/química , Piruvato Quinase/metabolismo , Curcumina/farmacologia , Resveratrol/farmacologia , Ácido Elágico , Silibina , Glicólise , Linhagem Celular Tumoral
2.
Comput Biol Med ; 145: 105452, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35364308

RESUMO

SARS-CoV-2, a rapidly spreading new strain of human coronavirus, has affected almost all the countries around the world. The lack of specific drugs against SARS-CoV-2 is a significant hurdle towards the successful treatment of COVID-19. Thus, there is an urgent need to boost up research for the development of effective therapeutics against COVID-19. In the current study, we investigated the efficacy of 81 medicinal plant-based bioactive compounds against SARS-CoV-2 Mpro by using various in silico techniques. The interaction affinities of polyphenolic compounds towards SARS-CoV-2 Mpro was assessed via intramolecular (by Quantum Mechanic), intermolecular (by Molecular Docking), and spatial (by Molecular Dynamic) simulations. Our obtained result demonstrate that Hesperidin, rutin, diosmin, and apiin are most effective compounds agents against SARS-CoV-2 Mpro as compared to Nelfinavir (positive control). This study will hopefully pave a way for advanced experimental research to evaluate the in vitro and in vivo efficacy of these compounds for the treatment of COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , Proteases 3C de Coronavírus , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Polifenóis/farmacologia , Inibidores de Proteases/farmacologia , SARS-CoV-2
3.
Anticancer Agents Med Chem ; 22(1): 30-39, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33874875

RESUMO

The identification and development of radioprotective agents have emerged as a subject matter of research during recent years due to the growing usage of ionizing radiation in different areas of human life. Previous work on synthetic radioprotectors has achieved limited progress because of the numerous issues associated with toxicity. Compounds extracted from plants have the potential to serve as lead candidates for developing ideal radioprotectors due to their low cost, safety, and selectivity. Polyphenols are the most abundant and commonly dispersed group of biologically active molecules possessing a broad range of pharmacological activities. Polyphenols have displayed efficacy for radioprotection during various investigations and can be administered at high doses with lesser toxicity. Detoxification of free radicals, modulating inflammatory responses, DNA repair, stimulation of hematopoietic recovery, and immune functions are the main mechanisms for radiation protection with polyphenols. Epicatechin, epigallocatechin-3-gallate, apigenin, caffeic acid phenylethylester, and silibinin provide cytoprotection together with the suppression of many pro-inflammatory cytokines owing to their free radical scavenging, anti-oxidant, and anti-inflammatory properties. Curcumin, resveratrol, quercetin, gallic acid, and rutin's radioprotective properties are regulated primarily by the direct or indirect decline in cellular stress. Thus, polyphenols may serve as potential candidates for radioprotection in the near future; however, extensive investigations are still required to better understand their protection mechanisms.


Assuntos
Antineoplásicos/farmacologia , Produtos Biológicos/farmacologia , Neoplasias/prevenção & controle , Polifenóis/farmacologia , Animais , Antineoplásicos/química , Produtos Biológicos/química , Humanos , Polifenóis/química , Radiação Ionizante
4.
Comb Chem High Throughput Screen ; 25(7): 1181-1186, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34391377

RESUMO

Oxalis corniculata (Oxalidaceae) is a small decumbent and delicate appearing medicinal herb flourishing in warm temperate and tropical domains such as Pakistan and India. Main bioactive chemical constituents of Oxalis plant include several alkaloids, flavonoids, terpenoids, cardiac glycosides, saponins, and phlobatannins, along with steroids. Due to its polyphenolic, glycosides and flavonoid profile, it is proved to be protective in numerous ailments and exhibit various biological activities such as anti-fungal, anti-cancer, anti-oxidant, antibacterial, anti-diabetic, and cardioprotective. Moreover, bioactive phytochemicals from this plant possess significant wound healing potential. Our current effort intends to emphasize on the immense significance of this plant species, which have not been the subject matter of clinical trials and effective pharmacological studies, even though its favored usage has been stated. This review proposes that Oxalis corniculata possess a potential for the cure of various diseases. However, further researches on isolation and characterization of bioactive compounds along with pre-clinical trials are compulsory to figure out its pharmacological applications.


Assuntos
Oxalidaceae , Plantas Medicinais , Antibacterianos/farmacologia , Antioxidantes , Flavonoides/farmacologia , Oxalidaceae/química , Compostos Fitoquímicos , Extratos Vegetais/química , Plantas Medicinais/química
5.
Biomed Res Int ; 2021: 5514669, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34136566

RESUMO

Pyruvate kinase (PK), a key enzyme that determines glycolytic activity, has been known to support the metabolic phenotype of tumor cells, and specific pyruvate kinase isoform M2 (PKM2) has been reported to fulfill divergent biosynthetic and energetic requirements of cancerous cells. PKM2 is overexpressed in several cancer types and is an emerging drug target for cancer during recent years. Therefore, this study was carried out to identify PKM2 inhibitors from natural products for cancer treatment. Based on the objectives of this study, firstly, plant extract library was established. In order to purify protein for the establishment of enzymatic assay system, pET-28a-HmPKM2 plasmid was transformed to E. coli BL21 (DE3) cells for protein expression and purification. After the validation of enzymatic assay system, plant extract library was screened for the identification of inhibitors of PKM2 protein. Out of 51 plant extracts screened, four extracts Mangifera indica (leaf, seed, and bark) and Bombex ceiba bark extracts were found to be inhibitors of PKM2. In the current study, M. indica (leaf, seed, and bark) extracts were further evaluated dose dependently against PKM2. These extracts showed different degrees of concentration-dependent inhibition against PKM2 at 90-360 µg/ml concentrations. We have also investigated the anticancer potential of these extracts against MDA-MB231 cells and generated dose-response curves for the evaluation of IC50 values. M. indica (bark and seed) extracts significantly halted the growth of MDA-MB231 cells with IC50 values of 108 µg/ml and 33 µg/ml, respectively. Literature-based phytochemical analysis of M. indica was carried out, and M. indica-derived 94 compounds were docked against three binding sites of PKM2 for the identification of PKM2 inhibitors. The results of in silico based screening have unveiled various PKM2 modulators; however, further studies are recommended to validate their PKM2 inhibitory potential via in vitro biochemical assay. The results of this study provide novel findings for possible mechanism of action of M. indica (bark and seed) extracts against TNBC via PKM2 inhibition suggesting that M. indica might be of therapeutic interest for the treatment of TNBC.


Assuntos
Proteínas de Transporte/antagonistas & inibidores , Mangifera/metabolismo , Proteínas de Membrana/antagonistas & inibidores , Extratos Vegetais/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Cristalografia por Raios X , Inibidores Enzimáticos/farmacologia , Feminino , Humanos , Concentração Inibidora 50 , Cinética , Casca de Planta/metabolismo , Folhas de Planta/metabolismo , Plasmídeos/metabolismo , Sementes/metabolismo , Sais de Tetrazólio , Tiazóis , Hormônios Tireóideos , Neoplasias de Mama Triplo Negativas/enzimologia , Proteínas de Ligação a Hormônio da Tireoide
6.
Curr Pharm Des ; 27(22): 2628-2634, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33573548

RESUMO

Natural products have served as a limitless reservoir of bioactive scaffolds for drug discovery against several disorders. Furanodiene is a bioactive natural product isolated from several plants of genus Curcuma. Its therapeutic potential against cancer, inflammation, and angiogenesis has been well-documented. The current review is an update about the natural sources and anti-cancer action mechanism of furanodiene. Furanodiene exerts its anti-cancer effects via induction of apoptosis in several cancer types by modulating MAPKs/ERK, NF-κB, and Akt pathways. Furanodiene has been systematically studied for its anti-cancer potential. However, pharmacokinetics, pharmacodynamics, pre-clinical and clinical studies still needed to be conducted to completely validate the potential of furanodiene for the treatment of cancer.


Assuntos
Compostos Heterocíclicos com 2 Anéis , Neoplasias , Apoptose , Furanos/farmacologia , Humanos , Neoplasias/tratamento farmacológico , Terpenos/farmacologia
7.
Phytomedicine ; 85: 153310, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32948420

RESUMO

BACKGROUND: SARS-CoV-2, an emerging strain of coronavirus, has affected millions of people from all the continents of world and received worldwide attention. This emerging health crisis calls for the urgent development of specific therapeutics against COVID-19 to potentially reduce the burden of this emerging pandemic. PURPOSE: This study aims to evaluate the anti-viral efficacy of natural bioactive entities against COVID-19 via molecular docking and molecular dynamics simulation. METHODS: A library of 27 caffeic-acid derivatives was screened against 5 proteins of SARS-CoV-2 by using Molegro Virtual Docker 7 to obtain the binding energies and interactions between compounds and SARS-CoV-2 proteins. ADME properties and toxicity profiles were investigated via www.swissadme.ch web tools and Toxtree respectively. Molecular dynamics simulation was performed to determine the stability of the lead-protein interactions. RESULTS: Our obtained results has uncovered khainaoside C, 6-O-Caffeoylarbutin, khainaoside B, khainaoside C and vitexfolin A as potent modulators of COVID-19 possessing more binding energies than nelfinavir against COVID-19 Mpro, Nsp15, SARS-CoV-2 spike S2 subunit, spike open state and closed state structure respectively. While Calceolarioside B was identified as pan inhibitor, showing strong molecular interactions with all proteins except SARS-CoV-2 spike glycoprotein closed state. The results are supported by 20 ns molecular dynamics simulations of the best complexes. CONCLUSION: This study will hopefully pave a way for development of phytonutrients-based antiviral therapeutic for treatment or prevention of COVID-19 and further studies are recommended to evaluate the antiviral effects of these phytochemicals against SARS-CoV-2 in in vitro and in vivo models.


Assuntos
Antivirais/farmacologia , Ácidos Cafeicos/farmacologia , Alimento Funcional , SARS-CoV-2/efeitos dos fármacos , Arbutina/análogos & derivados , Arbutina/farmacologia , Sítios de Ligação , Glucosídeos/farmacologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores
8.
Curr Pharm Des ; 27(4): 456-466, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32348212

RESUMO

Nature always remains an inexhaustible source of treasures for mankind. It remains a mystery for every challenge until the completion of the challenge. While we talk about the complicated health issues, nature offers us a great variety of chemical scaffolds and their various moieties packed in the form of natural products e.g., plants, microorganisms (fungi, algae, protozoa), and terrestrial vertebrates and invertebrates. This review article is an update about jaceosidin, a bioactive flavone, from genus Artemisia. This potentially active compound exhibits a variety of pharmacological activities including anti-inflammatory, anti-oxidant, anti-bacterial, antiallergic and anti-cancer activities. The bioactivities and the therapeutic action of jaceosidin, especially the modulation of different cell signaling pathways (ERK1/2, NF-κB, PI3K/Akt and ATM-Chk1/2) which become deregulated in various pathological disorders, have been focused here. The reported data suggest that the bioavailability of this anti-cancer compound should be enhanced by utilizing various chemical, biological and computational techniques. Moreover, it is recommended that researchers and scientists should work on exploring the mode of action of this particular flavone to precede it further as a potent anti-cancer compound.


Assuntos
Artemisia , Flavonas , Animais , Flavonas/farmacologia , Flavonoides , Fosfatidilinositol 3-Quinases
9.
Curr Drug Targets ; 22(5): 488-504, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33050858

RESUMO

Nature has provided prodigious reservoirs of pharmacologically active compounds for drug development since times. Physcion and physcion 8-O-ß-D-glucopyranoside (PG) are bioactive natural anthraquinones which exert anti-inflammatory and anticancer properties with minimum or no adverse effects. Moreover, physcion also exhibits anti-microbial and hepatoprotective properties, while PG is known to have anti-sepsis as well as ameliorative activities against dementia. This review aims to highlight the natural sources and anticancer activities of physcion and PG, along with associated mechanisms of actions. On the basis of the literature, physcion and PG regulate multitudinous cell signaling pathways through the modulation of various regulators of cell cycle, protein kinases, microRNAs, transcriptional factors, and apoptosis linked proteins resulting in the effective killing of cancerous cells in vitro as well as in vivo. Both compounds effectively suppress metastasis, furthermore, physcion acts as an inhibitor of 6PGD and also plays an important role in chemosensitization. This review article suggests that physcion and PG are potent anticancer drug candidates, but further investigations on their mechanism of action and pre-clinical trials are mandatory in order to comprehend the full potential of these natural cancer killers in anticancer remedies.


Assuntos
Antineoplásicos/farmacologia , Emodina , Neoplasias , Emodina/análogos & derivados , Emodina/farmacologia , Glucosídeos , Humanos , Neoplasias/tratamento farmacológico , Transdução de Sinais
10.
Mini Rev Med Chem ; 21(18): 2747-2763, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32646359

RESUMO

Nature has always proved to be a significant reservoir of bioactive scaffolds that have been used for the discovery of drugs since times. Medicinal plants continue to be a solid niche for biologically active and therapeutically effective chemical entities, opening up new avenues for the successful treatment of several human diseases. The contribution of plant-derived compounds to drug discovery, either in their original or in the semi-synthetic derivative form, extends far back in time. This review aims to focus on the sources, biological, and pharmacological profile of a pharmacologically active plant-derived coumarin, osthole, which is an important component of numerous remedial plants such as Cnidium monnieri. Several studies have revealed that osthole possess pharmacological properties such as anticancer, antioxidant, anti-hyperglycemic, neuroprotective, and antiplatelet. Osthole has been reported to regulate various signaling pathways, which in turn modulate several apoptosis-related proteins, cell cycle regulators, protein kinases, transcriptional factors, cytokines, and growth receptors affiliated with inflammation, proliferation and several other ailments. Osthole is known to halt proliferation and metastasis of cancerous cells by arresting the cell cycle and inducing apoptosis. The data in this review paper supports the pharmacological potential of osthole but further experimentation, biosafety profiling and synergistic effects of this compound need to be focused by the researchers to understand the full spectrum of pharmacological potential of this therapeutically potent compound.


Assuntos
Anti-Inflamatórios , Antineoplásicos , Antioxidantes , Cumarínicos/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Produtos Biológicos/farmacologia , Cnidium/química , Humanos
11.
Environ Res ; 190: 110017, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32768475

RESUMO

Nature as an infinite treasure of chemotypes and pharmacophores will continue to play an imperative role in the drug discovery. Natural products (NPs) such as plant and fungal metabolites have emerged as leads in drug discovery during recent years due to their efficacy, safety and selectivity. The current review summarizes natural sources as well as pharmacological potential of hispolon which is a major constituent of traditional medicinal mushroom Phellinus linteus. The study aims to update the scientific community about recent developments of hispolon in the arena of natural drugs by providing insights into its present status in therapeutic pursuits. Hispolon, a polyphenol has been reported to possess anticancer, antidiabetic, antioxidant, antiviral and anti-inflammatory activities. It fights against cancer via induction of apoptosis, halting cell cycle and inhibition of metastasis by targeting various cellular signaling pathways including PI3K/Akt, MAPK and NF-κB. The current review proposes that hispolon provides a novel opportunity for pharmacological applications and its styrylpyrone carbon skeleton might serve as an attractive scaffold for drug development. However, future researches are recommended to assess bioavailability, toxicological limits, pharmacokinetic and pharmacodynamic profiles of hispolon, in order to establish its potential as a potent multi-targeted drug in the near future.


Assuntos
Neoplasias , Polifenóis , Catecóis , Humanos , Fosfatidilinositol 3-Quinases , Polifenóis/farmacologia
12.
Food Chem Toxicol ; 145: 111642, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32783998

RESUMO

Natural products, being richly endowed with curative powers, have become spotlight for biomedical and pharmaceutical research to develop novel therapeutics during recent years. Ginkgetin (GK), a natural non-toxic biflavone, has been shown to exhibit anti-cancer, anti-inflammatory, anti-microbial, anti-adipogenic, and neuroprotective activities. GK combats cancer progression by arresting cell cycle, inducing apoptosis, stimulating autophagy, and targeting many deregulated signaling pathways such as JAK/STAT and MAPKs. GKhalts inflammation mediators like interleukins, iNOS, COX-2, PGE2, NF-κB, and acts as an inhibitor of PLA2. GK shows strong neuroprotection against oxidative stress-promoted cell death, inhibits cerebral micro-hemorrhage, decreases neurologic deficits, and halts apoptosis of neurons. GK also acts as anti-fungal, anti-viral, anti-bacterial, leishmanicidal and anti-plasmodial agent. GK shows substantial preventive or therapeutic effects in in vivo models of many diseases including atherosclerosis, cancer, neurodegenerative, hepatic, influenza, and inflammatory diseases. Based on various computational, in vitro and in vivo evidences, this article demonstrates the potential of ginkgetin for development of therapeutics against various diseases. Although GK has been systematically studied from pharmacological point of view, a vast field of pharmacokinetics, pre-clinical and clinical studies is still open for the researchers to fully validate its potential for the treatment of various diseases.


Assuntos
Biflavonoides/farmacologia , Biflavonoides/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos
13.
Curr Drug Metab ; 21(14): 1079-1090, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32723267

RESUMO

Natural products, an infinite reserve of bioactive molecules, will continue to serve humans as an important source of therapeutic agents. Germacrone is a bioactive natural compound found in the traditional medicinal plants of family Zingiberaceae. This multifaceted chemical entity has become a point of focus during recent years due to its numerous pharmacological applications, e.g., anticancer, anti-inflammatory, antiviral, antioxidant, anti-adipogenic, anti-androgenic, antimicrobial, insecticidal, and neuroprotective. Germacrone is an effective inducer of cell cycle arrest and apoptosis in various cancers (breast, brain, liver, skin, prostate, gastric, and esophageal) via modulation of different cell signaling molecules and pathways involved in cancer proliferation. This is the first report highlighting the wide spectrum of pharmacological activities exhibited by germacrone. The reported data collected from various shreds of evidences recommend that this multifaceted compound could serve as a potential drug candidate in the near future.


Assuntos
Anti-Infecciosos/uso terapêutico , Antineoplásicos/uso terapêutico , Doenças Metabólicas/tratamento farmacológico , Neoplasias/tratamento farmacológico , Sesquiterpenos de Germacrano/uso terapêutico , Viroses/tratamento farmacológico , Animais , Anti-Infecciosos/farmacocinética , Antineoplásicos/farmacocinética , Sinergismo Farmacológico , Humanos , Magnoliopsida/metabolismo , Metabolismo Secundário , Sesquiterpenos de Germacrano/farmacocinética
14.
Food Chem Toxicol ; 143: 111570, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32640345

RESUMO

Nerium oleander, a member of family Apocynaceae, is commonly known as Kaner in various countries of Asia and Mediterranean region. This plant has been renowned to possess significant therapeutic potential due to its various bioactive compounds which have been isolated from this plant e.g., cardiac glycosides, oleandrin, α-tocopherol, digitoxingenin, urosolic acid, quercetin, odorosides, and adigoside. Oleandrin, a saponin glycoside is one of the most potent and pharmacologically active phytochemicals of N. oleander. Its remarkable pharmacotherapeutic potential have been interpreted as anticancer, anti-inflammatory, anti-HIV, neuroprotective, antimicrobial and antioxidant. This particular bioactive entity is known to target the multiple deregulated signaling cascades of cancer such as NF-κB, MAPK, and PI3K/Akt. The main focus of the current study is to comprehend the action mechanisms of oleandrin against various pathological conditions. The current review is a comprehensive summary to facilitate the researchers to understand the pharmacological position of the oleandrin in the arena of drug discovery, representing this compound as a new drug candidate for further researches. Moreover, in vivo and in silico based studies are required to explore the mechanistic approaches regarding the pharmacokinetics and biosafety profiling of this compound to completely track its candidature status in natural drug discovery.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Cardenolídeos/farmacologia , Compostos Fitoquímicos , Transdução de Sinais/efeitos dos fármacos , Antineoplásicos Fitogênicos/química , Cardenolídeos/química , Ciclo Celular , Humanos
15.
Life Sci ; 250: 117591, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32224026

RESUMO

Nature's pharmacy has undoubtedly served humans as an affordable and safer health-care regime for a long times. Cardamonin, a chalconoid present in several plants has been known for a longtime to have beneficial properties towards human health. In this review, we aimed to highlight the recent advances achieved in discovering the pharmacological properties of cardamonin. Cardamonin is cardamom-derived chalcone, which plays a role in cancer treatment, immune system modulation, inflammation and pathogens killing. Through the modulation of cellular signaling pathways, cardamonin activates cell death signal to induce apoptosis in malignant cells that results in the inhibition of cancer development. Moreover, cardamonin arrests cell cycle by altering the expression of regulatory proteins during malignant cells division. Due to its relatively selective cytotoxic potential against host malignant cells, cardamonin is emerging as a promising novel experimental anticancer agent. The potential of cardamonin to target various signaling molecules, transcriptional factors, cytokines and enzymes, such as mTOR, NF-κB, Akt, STAT3, Wnt/ß-catenin and COX-2 enhances the opportunity to explore it as a new multi-target therapeutic agent. The pharmacokinetic and biosafety profile of cardamonin favor it as a potentially safe biomolecule for pharmaceutical drug development.


Assuntos
Chalconas/farmacologia , Neoplasias/metabolismo , Transdução de Sinais , Animais , Antineoplásicos Fitogênicos/farmacologia , Apoptose , Ciclo Celular , Linhagem Celular Tumoral , Humanos , Sistema Imunitário , Inflamação , Fígado/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neovascularização Patológica , Fator de Transcrição STAT3/metabolismo
16.
Sci Total Environ ; 722: 137907, 2020 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-32208265

RESUMO

Natural products (NPs) will continue to serve humans as matchless source of novel drug leads and an inspiration for the synthesis of non-natural drugs. As our scientific understanding of 'nature' is rapidly expanding, it would be worthwhile to illuminate the pharmacological distinctions of NPs to the scientific community and the public. Flavonoids have long fascinated scientists with their remarkable structural diversity as well as biological functions. Consequently, this review aims to shed light on the sources and pharmacological significance of a dietary isoflavone, biochanin A, which has been recently emerged as a multitargeted and multifunctional guardian of human health. Biochanin A possesses anti-inflammatory, anticancer, neuroprotective, antioxidant, anti-microbial, and hepatoprotective properties. It combats cancer development by inducing apoptosis, inhibition of metastasis and arresting cell cycle via targeting several deregulated signaling pathways of cancer. It fights inflammation by blocking the expression and activity of pro-inflammatory cytokines via modulation of NF-κB and MAPKs. Biochanin A acts as a neuroprotective agent by inhibiting microglial activation and apoptosis of neurons. As biochanin A has potential to modulate several biological networks, thus, it can be anticipated that this therapeutically potent compound might serve as a novel lead for drug development in the near future.


Assuntos
Genisteína/farmacologia , Anti-Inflamatórios , Apoptose , Humanos , NF-kappa B
17.
Biofactors ; 46(4): 550-562, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32039535

RESUMO

Reprogrammed metabolism is key biochemical characteristic of malignant cells, which represents one of the emerging hallmarks of cancer. Currently, there is rising contemplation on oxidative pentose phosphate pathway (PPP) enzymes as potential therapeutic hits due to their affiliation with tumor metabolism. 6-Phosphogluconate dehydrogenase (6PGD), third oxidative decarboxylase of PPP, has received a great deal of attention during recent years due to its critical role in tumorigenesis and redox homeostasis. 6PGD has been reported to overexpress in number of cancer types and its hyperactivation is mediated through post-transcriptional and post-translational modifications by YTH domain family 2 (YTHDF2), Nrf2 (nuclear factor erythroid 2-related factor 2), EGFR (epidermal growth factor receptor) and via direct structural interactions with ME1 (malic enzyme 1). Upregulated expression of 6PGD provides metabolic as well as defensive advantage to cancer cells, thus, promoting their proliferative and metastatic potential. Moreover, enhanced 6PGD expression also performs key role in development of chemoresistance as well as radiation resistance in cancer. This review aims to discuss the historical timeline and cancer-specific role of 6PGD, pharmacological and genetic inhibitors of 6PGD and 6PGD as prognostic biomarker in order to explore its potential for therapeutic interventions. We anticipate that targeting this imperative supplier of NADPH might serve as tempting avenue to combat the deadly disease like cancer.


Assuntos
Carcinogênese/genética , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias/genética , Via de Pentose Fosfato/genética , Fosfogluconato Desidrogenase/genética , Processamento de Proteína Pós-Traducional , Antineoplásicos/uso terapêutico , Carcinogênese/metabolismo , Carcinogênese/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Receptores ErbB/genética , Receptores ErbB/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Metástase Linfática , NADP/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Neoplasias/enzimologia , Neoplasias/patologia , Neoplasias/terapia , Via de Pentose Fosfato/efeitos dos fármacos , Fosfogluconato Desidrogenase/antagonistas & inibidores , Fosfogluconato Desidrogenase/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Tolerância a Radiação/genética , Transdução de Sinais , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
18.
J Asian Nat Prod Res ; 22(1): 1-16, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29973097

RESUMO

Eupatilin (5,7-dihydroxy-3',4',6-trimethoxyflavone) is a pharmacologically active flavone which has been isolated from a variety of medicinal plants. Eupatilin is known to possess various pharmacological properties such as anti-cancer, anti-oxidant, and anti-inflammatory. It is speculated that eupatilin could be subjected to structural optimization for the synthesis of derivative analogs to reinforce its efficacy, to minimize toxicity, and to optimize absorption profiles, which will ultimately lead towards potent drug candidates. Although, reported data acclaim multiple pharmacological activities of eupatilin but further experimentations on its molecular mechanism of action are yet mandatory to elucidate full spectrum of its pharmacological activities.


Assuntos
Medicamentos de Ervas Chinesas , Flavonas , Flavonoides , Estrutura Molecular
19.
Pak J Pharm Sci ; 32(4(Supplementary)): 1761-1766, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31680070

RESUMO

Peripheral nerve injury is a complex condition which results in restricted physical activity. Despite the tremendous efforts to figure out effective remedies, the complete functional retrieval is still a goal to be achieved. So, the need of hour is the exploration of potential natural compounds to recover this functional loss. Here, we have investigated the role of a local plant "Neurada procumbens" in ameliorating the functional recovery after an induced nerve compression injury in a mouse model. A dose of N. procumbens (50mg/kg of body weight) was administered orally from the day of injury to onwards. The motor functional recovery was assessed by evaluating muscle grip strength and sciatic functional index; while the sensory functions were gauged by the hotplate test. The serological parameters were carried out to analyze the effect of N. procumbens on oxidative stress level. The recovery of sensory and motor functions was significantly improved and perceived earlier in the treatment group. Moreover, the elevated antioxidant level was statistically significant in the treatment group. These results indicate that the supplementation of N. procumbens accelerates functional recovery after sciatic nerve crush injury.


Assuntos
Traumatismos dos Nervos Periféricos/tratamento farmacológico , Preparações de Plantas/farmacologia , Recuperação de Função Fisiológica/efeitos dos fármacos , Nervo Isquiático/efeitos dos fármacos , Neuropatia Ciática/tratamento farmacológico , Animais , Antioxidantes/farmacologia , Modelos Animais de Doenças , Camundongos , Atividade Motora/efeitos dos fármacos , Regeneração Nervosa/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos
20.
Int J Biol Sci ; 15(10): 2256-2264, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31592132

RESUMO

Nature has generously offered life-saving therapies to mankind by providing evolutionarily optimized drug-like entities in the form of natural products. These splendid gifts of nature have served as most suitable candidates for anti-cancer drug discovery due to their pleiotropic activity on target molecules. This review aims to provide an update on the natural sources and bioactivities of such gifts from nature, salvianolic acid A & B, which are major bioactive constituents of a traditional Chinses medicinal herb, Salvia miltiorrhiza. Salvianolic acid A & B have been reported to owe anti-cancer, anti-inflammatory and cardioprotective activities. Currently salvianolic acids have been emerged as potent anti-cancer molecules. Salvianolic acid A & B fight cancer progression by prompting apoptosis, halting cell cycle and adjourning metastasis by targeting multiple deregulated signaling networks of cancer. Moreover, salvianolic acid A & B display potency towards sensitizing cancer cells to chemo-drugs. The review purposes that salvianolic acid A & B supply a novel opportunity for drug discovery but further experimentation is mandatory to embellish the knowledge of their pharmacological usage and to access their toxicological limits in order to establish these compounds as potential multitarget future drugs.


Assuntos
Benzofuranos/farmacologia , Ácidos Cafeicos/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Lactatos/farmacologia , Polifenóis/farmacologia , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Humanos , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...