Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; : 1-14, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38450672

RESUMO

Conventional Gastrointestinal (GI) cancer treatments are quite expensive and have major hazards. Nowadays, a different strategy places more emphasis on creating tiny biologically active peptides that do not cause severe poisoning. Anticancer peptides (ACPs) are found through experimental screening, which is time-dependent and frequently fraught with difficulties. Gastric ACPs are emerging as a promising GI cancer treatment in the current day. It is crucial to identify novel gastric ACPs to have an improved knowledge of their functioning processes and treatment of gastric cancer. As a result of the post-genomic era's massive production of peptide sequences, rapid and effective ACPs using a computational method are essential. Several adaptive statistical techniques for distinguishing ACPs and non-ACPs have recently been developed. A variety of adapted statistically significant methods have been developed to differentiate between ACPs and non-ACPs. Despite significant progress, there is no specific model for the prediction of gastric ACPs because the specific model will predict a particular type of peptide more accurately and quickly. To overcome this, an initiative is taken for the creation of a reliable framework for the accurate identification of gastric ACPs. The current technique in particular contains four possible features along with one hybrid feature encoding mechanisms which are the target-class motif previously indicated by Amino Acid Composition, Dipeptide Composition, Tripeptide Composition (TPC), Pseudo Amino Acid Composition (PAAC), and their Hybrid. Machine Learning algorithms make high-performance and accurate prediction tools. Moreover, highly variable and ideal deep feature selection is done using an ANOVA-based F score for feature pruning. Experiments on a range of algorithms are carried out to identify the optimal operating strategy due to the diverse nature of learning. Following analysis of the empirical results, Naïve Bayes with TPC and Hybrid feature space outperforms other methods with 0.99 accuracy score on the testing dataset. To find the model generalization an external validation is carried out. In external datasets, the Extra Trees with PAAC features outperforms with the accuracy of 0.94. The comparison study shows that our suggested model will predict gastric ACPs more accurately and will be useful in drug development and gastric cancer. The predictive model can be freely accessed at https://github.com/humeraazad10/G-ACP.git.Communicated by Ramaswamy H. Sarma.

2.
Int J Mol Sci ; 23(13)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35806038

RESUMO

Essential oils and their active components have been extensively reported in the literature for their efficient antimicrobial, antioxidant and antifungal properties. However, the sensitivity of these volatile compounds towards heat, oxygen and light limits their usage in real food packaging applications. The encapsulation of these compounds into inorganic nanocarriers, such as nanoclays, has been shown to prolong the release and protect the compounds from harsh processing conditions. Nevertheless, these systems have limited shelf stability, and the release is of limited control. Thus, this study presents a mesoporous silica nanocarrier with a high surface area and well-ordered protective pore structure for loading large amounts of natural active compounds (up to 500 mg/g). The presented loaded nanocarriers are shelf-stable with a very slow initial release which levels out at 50% retention of the encapsulated compounds after 2 months. By the addition of simulated drip-loss from chicken, the release of the compounds is activated and gives an antimicrobial effect, which is demonstrated on the foodborne spoilage bacteria Brochothrixthermosphacta and the potentially pathogenic bacteria Escherichia coli. When the release of the active compounds is activated, a ≥4-log reduction in the growth of B. thermosphacta and a 2-log reduction of E. coli is obtained, after only one hour of incubation. During the same one-hour incubation period the dry nanocarriers gave a negligible inhibitory effect. By using the proposed nanocarrier system, which is activated by the food product itself, increased availability of the natural antimicrobial compounds is expected, with a subsequent controlled antimicrobial effect.


Assuntos
Anti-Infecciosos , Óleos Voláteis , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Infecciosos/análise , Anti-Infecciosos/farmacologia , Preparações de Ação Retardada/farmacologia , Escherichia coli , Embalagem de Alimentos , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Dióxido de Silício
3.
Foods ; 10(5)2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34069511

RESUMO

Innovative active packaging has the potential to maintain the food quality and preserve the food safety for extended period. The aim of this study was to discover the effect of active films based on commercially available polylactic acid blend (PLAb) and natural active components on the shelf life and organoleptic properties of chicken fillets and to find out; to what extent they can be used as replacement to the traditional packaging materials. In this study, commercially available PLAb was compounded with citral and cinnamon oil. Active films with 300 µm thickness were then produced on a blown film extruder. The PLAb-based films were thermoformed into trays. Fresh chicken breast fillets were packed under two different gas compositions, modified atmosphere packaging of 60% CO2/40% N2, and 75% O2/25% CO2 and stored at 4 °C. The effect of active packaging materials and gas compositions on the drip loss, dry matter content, organoleptic properties, and microbial quality of the chicken fillets were studied over a storage time of 24 days. The presence of active components in the compounded films was confirmed with FTIR, in addition the release of active components in the headspace of the packaging was established with GC/MS. Additionally, gas barrier properties of the packages were studied. No negative impact on the drip loss and dry matter content was observed. The results show that PLAb-based active packaging can maintain the quality of the chicken fillets and have the potential to replace the traditional packaging materials, such as APET/PE trays.

4.
Nanomaterials (Basel) ; 11(2)2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33540744

RESUMO

Design and development of novel inorganic nanocarriers for encapsulation of natural antimicrobial substances for food packaging applications have received great interest during the last years. Natural nanoclays are the most investigated nanocarriers and recently interest has also grown in the synthetically produced porous silica particles. However, these different carrier matrices have not been compared in terms of their loading capability and subsequent release. In this study, the feasibility of porous silica particles (with different pore structures and/or surface functionalities) and commercially available nanoclays were evaluated as encapsulation matrices. Two well-studied antimicrobial substances, thymol and curcumin, were chosen as volatile and non-volatile model compounds, respectively. The encapsulation efficiency, and the subsequent dispersibility and release, of these substances differed significantly among the nanocarriers. Encapsulation of the volatile compound highly depends on the inner surface area, i.e., the protective pore environment, and an optimal nanocarrier can protect the encapsulated thymol from volatilization. For the non-volatile compound, only the release rate and dispersibility are affected by the pore structure. Further, water-activated release of the volatile compound was demonstrated and exhibited good antimicrobial efficacy in the vapor phase against Staphylococcus aureus. This comparative study can provide a base for selecting the right nanocarrier aimed at a specific food packaging application. No nanocarrier can be considered as a universally applicable one.

5.
Compr Rev Food Sci Food Saf ; 20(2): 1333-1380, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33547765

RESUMO

Fossil-based plastic materials are an integral part of modern life. In food packaging, plastics have a highly important function in preserving food quality and safety, ensuring adequate shelf life, and thereby contributing to limiting food waste. Meanwhile, the global stream of plastics into the oceans is increasing exponentially, triggering worldwide concerns for the environment. There is an urgent need to reduce the environmental impacts of packaging waste, a matter raising increasing consumer awareness. Shifting part of the focus toward packaging materials from renewable resources is one promising strategy. This review provides an overview of the status and future of biobased and biodegradable films used for food packaging applications, highlighting the effects on food shelf life and quality. Potentials, limitations, and promising modifications of selected synthetic biopolymers; polylactic acid, polybutylene succinate, and polyhydroxyalkanoate; and natural biopolymers such as cellulose, starch, chitosan, alginate, gelatine, whey, and soy protein are discussed. Further, this review provides insight into the connection between biobased packaging materials and innovative technologies such as high pressure, cold plasma, microwave, ultrasound, and ultraviolet light. The potential for utilizing such technologies to improve biomaterial barrier and mechanical properties as well as to aid in improving overall shelf life for the packaging system by in-pack processing is elaborated on.


Assuntos
Embalagem de Alimentos , Eliminação de Resíduos , Alimentos , Qualidade dos Alimentos , Plásticos
6.
Nanomaterials (Basel) ; 11(1)2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33374563

RESUMO

There is a strong drive in industry for packaging solutions that contribute to sustainable development by targeting a circular economy, which pivots around the recyclability of the packaging materials. The aim is to reduce traditional plastic consumption and achieve high recycling efficiency while maintaining the desired barrier and mechanical properties. In this domain, packaging materials in the form of polymer nanocomposites (PNCs) can offer the desired functionalities and can be a potential replacement for complex multilayered polymer structures. There has been an increasing interest in nanocomposites for food packaging applications, with a five-fold rise in the number of published articles during the period 2010-2019. The barrier, mechanical, and thermal properties of the polymers can be significantly improved by incorporating low concentrations of nanofillers. Furthermore, antimicrobial and antioxidant properties can be introduced, which are very relevant for food packaging applications. In this review, we will present an overview of the nanocomposite materials for food packaging applications. We will briefly discuss different nanofillers, methods to incorporate them in the polymer matrix, and surface treatments, with a special focus on the barrier, antimicrobial, and antioxidant properties. On the practical side migration issues, consumer acceptability, recyclability, and toxicity aspects will also be discussed.

7.
Anal Bioanal Chem ; 411(11): 2339-2349, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30899997

RESUMO

We introduce rapid replica molding of ordered, high-aspect-ratio, thiol-ene micropillar arrays for implementation of microfluidic immobilized enzyme reactors (IMERs). By exploiting the abundance of free surface thiols of off-stoichiometric thiol-ene compositions, we were able to functionalize the native thiol-ene micropillars with gold nanoparticles (GNPs) and these with proteolytic α-chymotrypsin (CHT) via thiol-gold interaction. The micropillar arrays were replicated via PDMS soft lithography, which facilitated thiol-ene curing without the photoinitiators, and thus straightforward bonding and good control over the surface chemistry (number of free surface thiols). The specificity of thiol-gold interaction was demonstrated over allyl-rich thiol-ene surfaces and the robustness of the CHT-IMERs at different flow rates and reaction temperatures using bradykinin hydrolysis as the model reaction. The product conversion rate was shown to increase as a function of decreasing flow rate (increasing residence time) and upon heating of the IMER to physiological temperature. Owing to the effective enzyme immobilization onto the micropillar array by GNPs, no further purification of the reaction solution was required prior to mass spectrometric detection of the bradykinin hydrolysis products and no clogging problems, commonly associated with conventional capillary packings, were observed. The activity of the IMER remained stable for at least 1.5 h (continuous use), suggesting that the developed protocol may provide a robust, new approach to implementation of IMER technology for proteomics research. Graphical abstract.


Assuntos
Quimotripsina/química , Enzimas Imobilizadas/química , Ouro/química , Dispositivos Lab-On-A-Chip , Nanopartículas Metálicas/química , Compostos de Sulfidrila/química , Animais , Bradicinina/química , Bovinos , Hidrólise , Modelos Moleculares
8.
ACS Appl Mater Interfaces ; 9(21): 17906-17913, 2017 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-28488846

RESUMO

Uniform and pinhole-free electron-selective TiO2 layers are of utmost importance for efficient perovskite solar cells. Here we used a scalable and low-cost dip-coating method to prepare uniform and ultrathin (5-50 nm) compact TiO2 films on fluorine-doped tin oxide (FTO) glass substrates. The thickness of the film was tuned by changing the TiCl4 precursor concentration. The formed TiO2 follows the texture of the underlying FTO substrates, but at higher TiCl4 concentrations, the surface roughness is substantially decreased. This change occurs at a film thickness close to 20-30 nm. A similar TiCl4 concentration is needed to produce crystalline TiO2 films. Furthermore, below this film thickness, the underlying FTO might be exposed resulting in pinholes in the compact TiO2 layer. When integrated into mesoscopic perovskite solar cells there appears to be a similar critical compact TiO2 layer thickness above which the devices perform more optimally. The power conversion efficiency was improved by more than 50% (from 5.5% to ∼8.6%) when inserting a compact TiO2 layer. Devices without or with very thin compact TiO2 layers display J-V curves with an "s-shaped" feature in the negative voltage range, which could be attributed to immobilized negative ions at the electron-extracting interface. A strong correlation between the magnitude of the s-shaped feature and the exposed FTO seen in the X-ray photoelectron spectroscopy measurements indicates that the s-shape is related to pinholes in the compact TiO2 layer when it is too thin.

9.
J Chromatogr A ; 1486: 76-85, 2017 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-27847109

RESUMO

In this study, a novel solid phase microextration (SPME) Arrow was prepared for the sampling of volatile low molecular weight alkylamines (trimethylamine (TMA) and triethylamine (TEA)) in wastewater, salmon and mushroom samples before gas chromatographic separation with mass spectrometer as detector. Acidified zeolitic imidazolate framework-8 (A-ZIF-8) was utilized as adsorbent and poly(vinyl chloride) (PVC) as the adhesive. The custom SPME Arrow was fabricated via a physical adhesion: (1) ZIF-8 particles were suspended in a mixture of tetrahydrofuran (THF) and PVC to form a homogeneous suspension, (2) a non-coated stainless steel SPME Arrow was dipped in the ZIF-8/PVC suspension for several times to obtain a uniform and thick coating, (3) the pore size of ZIF-8 was modified by headspace exposure to hydrochloric acid in order to increase the extraction efficiency for amines. The effect of ZIF-8 concentration in PVC solution, dipping cycles and aging temperature on extraction efficiency was investigated. In addition, sampling parameters such as NaCl concentration, sample volume, extraction time, potassium hydroxide concentration, desorption temperature and desorption time were optimized. The Arrow-to-Arrow reproducibilities (RSDs) for five ZIF-8 coated Arrows were 15.6% and 13.3% for TMA and TEA, respectively. The extraction with A-ZIF-8/PVC Arrow was highly reproducible for at least 130 cycles without noticeable decrease of performance (RSD<12.5%). Headspace SPME of 7.5mL sample solution with the fabricated ZIF-8 coated Arrow achieved linear ranges of 1-200ngmL-1 for both TMA and TEA. The limit of quantitation (LOQ) was 1ngmL-1 for both TMA and TEA. The method was successfully applied to the determination of TMA and TEA in wastewater, salmon and mushroom samples giving satisfactory selectivity towards the studied amines.


Assuntos
Aminas/análise , Aminas/química , Análise de Alimentos/métodos , Cromatografia Gasosa-Espectrometria de Massas , Imidazóis/química , Microextração em Fase Sólida/métodos , Águas Residuárias/química , Zeolitas/química , Agaricales/química , Animais , Etilaminas/análise , Etilaminas/química , Metilaminas/análise , Metilaminas/química , Peso Molecular , Cloreto de Polivinila/química , Salmão , Alimentos Marinhos , Cloreto de Sódio/química , Microextração em Fase Sólida/instrumentação , Aço Inoxidável/química , Temperatura
10.
J Mater Chem B ; 4(9): 1720-1732, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-32263023

RESUMO

In this study, we have investigated the contrast enhancement of Gd(iii) incorporated nanoparticle-based contrast agents (CA) by the modulation of the synthesis and structural parameters of the mesoporous silica nanoparticle (MSN) matrix. In the optimisation process, the structure of the MSN matrix, post-synthesis treatment protocols, as well as the source and incorporation routes of paramagnetic gadolinium centers were considered, with the aim to shorten the T1 weighted relaxation time. After preliminary evaluation of the prepared MSNs as nanoparticulate T1/positive contrast agents based on relaxivity, the structure of the MSN matrix was affirmed as the most decisive property to enhance the r1 relaxivity value, alongside the incorporation route of paramagnetic Gd(iii) centers. Based on these findings, the most promising Gd(iii) incorporated MSN-based CA candidate was further evaluated for its cytocompatibility and intensity enhancement by in vitro phantom MR-imaging of labeled cells. Furthermore, pre-labeled tumors grown on a chick embryo chorioallantoic membrane (CAM) were imaged as an in vivo model on a 3T clinical MRI scanner. Our findings show that the optimized MSN-based CA design enables proper access of water to Gd-centers in the selected MSN matrices, and simultaneously decreases the required amount of Gd(iii) content per mass when evaluated against the other MSNs. Consequently, the required Gd amount on a per-dose basis is significantly decreased with regard to clinically used Gd-based CAs for T1-weighted MR imaging.

11.
Colloids Surf B Biointerfaces ; 136: 527-35, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26454542

RESUMO

Adsorption of proteins and adhesion of bacteria to a surface is affected by chemical and physical interactions. In this study, polymer coatings and their ability to adsorb avidin and Staphylococcus aureus were investigated. The surface chemistry and topography of the polymer coatings was modified by changing the weight ratio of the hydrophobic polystyrene (PS) and the hydrophilic acrylonitrile butadiene styrene (ABS) components in the polymer blend. Avidin adsorbed less to the ABS phase compared with the PS phase. The side-on orientation of avidin on the ABS surface, however, resulted in a higher specific binding of biotinylated bovine serum albumin. Steric effects and hydrophobic protein-surface interactions decreased the activity of avidin on the PS phase. The increased hydrophobicity and roughness of the polymer coatings enhanced the adhesion of S. aureus. The avidin-coated latex surface with 55% relative surface coverage of the PS phase showed anti-microbial behavior.


Assuntos
Proteínas de Bactérias/química , Nanoestruturas , Polímeros/química , Staphylococcus aureus/química , Adsorção , Aderência Bacteriana , Staphylococcus aureus/fisiologia
12.
Colloids Surf B Biointerfaces ; 118: 261-9, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24802964

RESUMO

Specific interactions of extracellular matrix proteins with cells and their adhesion to the substrate are important for cell growth. A nanopatterned latex-coated paper substrate previously shown to be an excellent substrate for cell adhesion and 2D growth was studied for directed immobilization of proteins. The nanostructured latex surface was formed by short-wavelength IR irradiation of a two-component latex coating consisting of a hydrophilic film-forming styrene butadiene acrylonitrile copolymer and hydrophobic polystyrene particles. The hydrophobic regions of the IR-treated latex coating showed strong adhesion of bovine serum albumin (cell repelling protein), fibronectin (cell adhesive protein) and streptavidin. Opposite to the IR-treated surface, fibronectin and streptavidin had a poor affinity toward the untreated pristine latex coating. Detailed characterization of the physicochemical surface properties of the latex-coated substrates revealed that the observed differences in protein affinity were mainly due to the presence or absence of the protein repelling polar and charged surface groups. The protein adsorption was assisted by hydrophobic (dehydration) interactions.


Assuntos
Fibronectinas/isolamento & purificação , Látex/química , Nanoestruturas/química , Papel , Soroalbumina Bovina/isolamento & purificação , Estreptavidina/isolamento & purificação , Adesividade , Adsorção , Animais , Bovinos , Raios Infravermelhos , Microscopia de Força Atômica , Espectroscopia Fotoeletrônica , Técnicas de Microbalança de Cristal de Quartzo , Propriedades de Superfície
13.
Biomater Sci ; 2(12): 1750-1760, 2014 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-32481953

RESUMO

Aimed at utilizing high-magnetization nanospheres for magnetic field-enhanced cellular labeling, core-shell structured sandwich-like magnetic mesoporous silica nanospheres were developed. While the magnetite cluster core can provide a high magnetic response for overcoming Brownian motion in cell culture media, the layered silica shell facilitates an efficient fluorescent dye labeling. However, the problem of particle aggregation in cell media, which is strongly enhanced under a magnetic field, significantly impeded the uptake by cells, resulting in difficulties in the precise analysis of the degree of particle internalization by fluorescence-based techniques (flow cytometry and confocal microscopy). To overcome this, reflection-based assessment was employed. Further, emphasis was put on utilizing the unique role of surface-hyperbranched polyethylenimine (PEI) in efficient prevention of particle aggregation prior to cell internalization in the presence of an external magnetic field. The interparticle attraction forces originating from magnetic dipole-dipole interactions are hereby balanced by the steric and electrostatic repulsion forces provided by the PEI functionalization, which leads to dispersed nanospheres in cell culture media during the magnetic-field induced cell labeling. As a consequence, PEI functionalization and the presence of the magnetic field synergistically enhanced the efficiency of MRI-fluorescence dual-mode labeling for cellular tracking.

14.
Biosensors (Basel) ; 3(1): 1-17, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25587396

RESUMO

In this article, we report on the formation and mode-of-operation of an affinity biosensor, where alternate layers of biotin/streptavidin/biotinylated-CRP-antigen/anti-CRP antibody are grown on printed gold electrodes on disposable paper-substrates. We have successfully demonstrated and detected the formation of consecutive layers of supra-molecular protein assembly using an electrical (impedimetric) technique. The formation process is also supplemented and verified using conventional surface plasmon resonance (SPR) measurements and surface sensitive characterization techniques, such as X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). The article provides a possible biosensor development scheme, where-(1) fabrication of paper substrate (2) synthesis of gold nanoparticle inks (3) inkjet printing of gold electrodes on paper (4) formation of the biorecognition layers on the gold electrodes and (5) electrical (impedimetric) analysis of growth-all are coupled together to form a test-structure for a recyclable and inexpensive point-of-care diagnostic platform.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...