Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 916: 170064, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38242481

RESUMO

The unrestricted release of various toxic substances into the environment is a critical global issue, gaining increased attention in modern society. Many of these substances are pristine to various environmental compartments known as contaminants/emerging contaminants (ECs). Nanoparticles and emerging sorbents enhanced remediation is a compelling methodology exhibiting great potential in addressing EC-related issues and facilitating their elimination from the environment, particularly those compounds that demonstrate eco-toxicity and pose considerable challenges in terms of removal. It provides a novel technique enabling the secure and sustainable removal of various ECs, including persistent organic compounds, microplastics, phthalate, etc. This extensive review presents a critical perspective on the current advancements and potential outcomes of nano-enhanced remediation techniques such as photocatalysis, nano-sensing, nano-enhanced sorbents, bio/phyto-remediation, which are applied to clean-up the natural environment. In addition, when dealing with residual contaminants, special attention is paid to both health and environmental implications; therefore, an evaluation of the long-term sustainability of nano-enhanced remediation methods has been considered. The integrated mechanical approaches were thoroughly discussed and presented in graphical forms. Thus, the critical evaluation of the integrated use of most emerging remediation technologies will open a new dimension in environmental safety and clean-up program.


Assuntos
Recuperação e Remediação Ambiental , Nanopartículas , Nanoestruturas , Plásticos , Carvão Vegetal
2.
Chemosphere ; 256: 126862, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32442795

RESUMO

Despite the increasing interest for biochar as a soil amendment, a knowledge gap remains on different particle size of biochar on soil phosphorous (P) availability and its impacts on microbial community. We hypothesized that biochar particle size and incubation temperature can significantly influence soil P availability and microbial community in subtropical acidic soil. A laboratory incubation study was established to investigate the effects of soil pH, available P and soil microbial responses to biochar addition having varying particle sizes using paddy soil and red soil under different incubation temperatures (15 °C & 25 °C). Biochar produced via pyrolysis of spent mushroom substrate feedstock was sieved into three particle sizes ((≤0.5 mm (fine), 0.5-1.0 mm (medium) and 1.0-2.0 mm (large)). The results exhibited that the fine particle biochar resulted in significantly higher release of P, soil pH, available P and bacterial species richness while simultaneously reducing the activities of phosphatase enzyme in both soils. Apprehending the impact of biochar particle size and incubation temperature, principal coordinate analysis (PCoA) predicted that soil microbial communities with fine particle biochar and high incubation temperature (25 °C) clustered separately. Redundancy analysis depicted that fine particle biochar had a direct association with available P and soil pH while high incubation temperature depicted a strong affinity for microbial communities. Hence, it is suggested that fine particle biochar and high incubation temperature may provide better habitat for microorganisms compared to the other particle sizes which may be due to improved soil pH and available P. However, a long term study of different biochar particles application in subtropical acidic soil needs to be pursued further for a more comprehensive understanding on this issue.


Assuntos
Carvão Vegetal/química , Fósforo/análise , Poluentes do Solo , Bactérias , Microbiota , Tamanho da Partícula , Solo/química , Microbiologia do Solo , Temperatura
3.
Environ Monit Assess ; 191(4): 251, 2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30919093

RESUMO

Global climate is undergoing significant changes due to extensive release of greenhouse gases (GHGs) such as CO2 and methane in the atmosphere. These gases are produced and released as a result of anthropogenic activities and fossil fuel burnings which also result in depletion of soil carbon resources. Biochar has various distinctive properties, which contribute to make it an effective, economical, and eco-friendly approach for soil carbon sequestration. The versatility in physicochemical properties of biochar provides an opportunity to optimize its efficacy to obtain desired benefits. A critical review of the literature indicates that biochar and plant growth-promoting microbes have the potential to improve soil organic carbon (SOC). Recent studies have depicted a significant role of the combined application of plant growth-promoting microbes and biochar on SOC dynamics. In future, these areas need to be explored as these have the potential to improve SOC dynamics and it could be a better strategy to sustain natural resources and ultimately mitigation of the climate change.


Assuntos
Sequestro de Carbono , Carvão Vegetal , Mudança Climática , Gases de Efeito Estufa , Desenvolvimento Vegetal , Plantas/microbiologia , Solo/química , Atmosfera , Carbono , Dióxido de Carbono , Monitoramento Ambiental , Gases , Metano , Rhizobiaceae
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...