Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Psychiatry ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486048

RESUMO

Early-life stress has been linked to multiple neurodevelopmental and neuropsychiatric deficits. Our previous studies have linked maternal presence/absence from the nest in developing rat pups to changes in prefrontal cortex (PFC) activity. Furthermore, we have shown that these changes are modulated by serotonergic signaling. Here we test whether changes in PFC activity during early life affect the developing cortex leading to behavioral alterations in the adult. We show that inhibiting the PFC of mouse pups leads to cognitive deficits in the adult comparable to those seen following maternal separation. Moreover, we show that activating the PFC during maternal separation can prevent these behavioral deficits. To test how maternal separation affects the transcriptional profile of the PFC we performed single-nucleus RNA-sequencing. Maternal separation led to differential gene expression almost exclusively in inhibitory neurons. Among others, we found changes in GABAergic and serotonergic pathways in these interneurons. Interestingly, both maternal separation and early-life PFC inhibition led to changes in physiological responses in prefrontal activity to GABAergic and serotonergic antagonists that were similar to the responses of more immature brains. Prefrontal activation during maternal separation prevented these changes. These data point to a crucial role of PFC activity during early life in behavioral expression in adulthood.

2.
ACS Chem Neurosci ; 15(5): 932-943, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38377680

RESUMO

Alzheimer's disease (AD) is a progressive degenerative disorder that results in a severe loss of brain cells and irreversible cognitive decline. Memory problems are the most recognized symptoms of AD. However, approximately 90% of patients diagnosed with AD suffer from behavioral symptoms, including mood changes and social impairment years before cognitive dysfunction. Recent evidence indicates that the dorsal raphe nucleus (DRN) is among the initial regions that show tau pathology, which is a hallmark feature of AD. The DRN harbors serotonin (5-HT) neurons, which are critically involved in mood, social, and cognitive regulation. Serotonergic impairment early in the disease process may contribute to behavioral symptoms in AD. However, the mechanisms underlying vulnerability and contribution of the 5-HT system to AD progression remain unknown. Here, we performed behavioral and electrophysiological characterizations in mice expressing a phosphorylation-prone form of human tau (hTauP301L) in 5-HT neurons. We found that pathological tau expression in 5-HT neurons induces anxiety-like behavior and alterations in stress-coping strategies in female and male mice. Female mice also exhibited social disinhibition and mild cognitive impairment in response to 5-HT neuron-specific hTauP301L expression. Behavioral alterations were accompanied by disrupted 5-HT neuron physiology in female and male hTauP301L expressing mice with exacerbated excitability disruption in females only. These data provide mechanistic insights into the brain systems and symptoms impaired early in AD progression, which is critical for disease intervention.


Assuntos
Neurônios , Proteínas tau , Animais , Feminino , Humanos , Masculino , Camundongos , Doença de Alzheimer/metabolismo , Ansiedade , Núcleo Dorsal da Rafe/metabolismo , Neurônios/metabolismo , Neurônios Serotoninérgicos/metabolismo , Serotonina/metabolismo , Proteínas tau/metabolismo
3.
Biol Psychiatry ; 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38316332

RESUMO

BACKGROUND: Chronic childhood stress is a prominent risk factor for developing affective disorders, yet mechanisms underlying this association remain unclear. Maintenance of optimal serotonin (5-HT) levels during early postnatal development is critical for the maturation of brain circuits. Understanding the long-lasting effects of early life stress (ELS) on serotonin-modulated brain connectivity is crucial to develop treatments for affective disorders arising from childhood stress. METHODS: Using a mouse model of chronic developmental stress, we determined the long-lasting consequences of ELS on 5-HT circuits and behavior in females and males. Using FosTRAP mice, we cross-correlated regional c-Fos density to determine brain-wide functional connectivity of the raphe nucleus. We next performed in vivo fiber photometry to establish ELS-induced deficits in 5-HT dynamics and optogenetics to stimulate 5-HT release to improve behavior. RESULTS: Adult female and male mice exposed to ELS showed heightened anxiety-like behavior. ELS further enhanced susceptibility to acute stress by disrupting the brain-wide functional connectivity of the raphe nucleus and the activity of 5-HT neuron population, in conjunction with increased orbitofrontal cortex (OFC) activity and disrupted 5-HT release in medial OFC. Optogenetic stimulation of 5-HT terminals in the medial OFC elicited an anxiolytic effect in ELS mice in a sex-dependent manner. CONCLUSIONS: These findings suggest a significant disruption in 5-HT-modulated brain connectivity in response to ELS, with implications for sex-dependent vulnerability. The anxiolytic effect of the raphe-medial OFC circuit stimulation has potential implications for developing targeted stimulation-based treatments for affective disorders that arise from early life adversities.

4.
STAR Protoc ; 4(4): 102689, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37979176

RESUMO

Fiber photometry offers insight into cell-type-specific activity underlying social interactions. We provide a protocol for the integration of fiber photometry recordings into the analysis of social behavior in rodent models. This includes considerations during surgery, notes on synchronizing fiber photometry with behavioral recordings, advice on using multi-animal behavioral tracking software, and scripts for the analysis of fiber photometry recordings. For complete details on the use and execution of this protocol, please refer to Dawson et al. (2023).1.


Assuntos
Fotometria , Comportamento Social , Animais , Software
5.
Cell Rep ; 42(7): 112815, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37459234

RESUMO

The hypothalamus plays a crucial role in the modulation of social behavior by encoding internal states. The hypothalamic hypocretin/orexin neurons, initially identified as regulators of sleep and appetite, are important for emotional and motivated behaviors. However, their role in social behavior remains unclear. Using fiber photometry and behavioral analysis, we show here that hypocretin neurons differentially encode social discrimination based on the nature of social encounters. The optogenetic inhibition of hypocretin neuron activity or blocking of hcrt-1 receptors reduces the amount of time mice are engaged in social interaction in males but not in females. Reduced hcrt-1 receptor signaling during social interaction is associated with altered activity in the insular cortex and ventral tegmental area in males. Our data implicating hypocretin neurons as sexually dimorphic regulators within social networks have significant implications for the treatment of neuropsychiatric diseases with social dysfunction, particularly considering varying prevalence among sexes.


Assuntos
Neuropeptídeos , Masculino , Feminino , Camundongos , Animais , Orexinas , Neuropeptídeos/farmacologia , Interação Social , Neurônios/fisiologia , Discriminação Social
6.
bioRxiv ; 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37034804

RESUMO

The medial prefrontal cortex (mPFC) regulates cognitive flexibility and emotional behavior. Neurons that release serotonin project to the mPFC, and serotonergic drugs influence emotion and cognition. Yet, the specific roles of endogenous serotonin release in the mPFC on neurophysiology and behavior are unknown. We show that axonal serotonin release in the mPFC directly inhibits the major mPFC output neurons. In serotonergic neurons projecting from the dorsal raphe to the mPFC, we find endogenous activity signatures pre-reward retrieval and at reward retrieval during a cognitive flexibility task. In vivo optogenetic activation of this pathway during pre-reward retrieval selectively improved extradimensional rule shift performance while inhibition impaired it, demonstrating sufficiency and necessity for mPFC serotonin release in cognitive flexibility. Locomotor activity and anxiety-like behavior were not affected by either optogenetic manipulation. Collectively, our data reveal a powerful and specific modulatory role of endogenous serotonin release from dorsal raphe-to-mPFC projecting neurons in cognitive flexibility.

7.
Front Neuroendocrinol ; 69: 101061, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36758770

RESUMO

Alzheimer's Disease (AD) is the leading cause of dementia, observed at a higher incidence in women compared with men. Treatments aimed at improving pathology in AD remain ineffective to stop disease progression. This makes the detection of the early intervention strategies to reduce future disease risk extremely important. Isolation and loneliness have been identified among the major risk factors for AD. The increasing prevalence of both loneliness and AD emphasizes the urgent need to understand this association to inform treatment. Here we present a comprehensive review of both clinical and preclinical studies that investigated loneliness and social isolation as risk factors for AD. We discuss that understanding the mechanisms of how loneliness exacerbates cognitive impairment and AD with a focus on sex differences will shed the light for the underlying mechanisms regarding loneliness as a risk factor for AD and to develop effective prevention or treatment strategies.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Feminino , Humanos , Masculino , Doença de Alzheimer/etiologia , Doença de Alzheimer/patologia , Solidão/psicologia , Isolamento Social/psicologia , Disfunção Cognitiva/etiologia , Fatores de Risco
9.
Neuropharmacology ; 168: 108015, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32092443

RESUMO

Social isolation raises the risk for mood disorders associated with serotonergic disruption. Yet, the underlying mechanisms by which the stress of social isolation increases risk are not well understood. Men and women are differently vulnerable; however, this modulating role of sex is challenging to study in humans under carefully controlled conditions. Therefore, we investigated this question in mice of both sexes, asking how the long-term stress of social isolation (from weaning into adulthood) affects the excitability of serotonin neurons in the dorsal raphe nucleus as well as mouse behaviour. The electrophysiological experiments and the first set of behavioural tests were conducted in young adult mice, with additional behavioural assays completed as the mice matured to assess the stability of their behavioural phenotype. We found that social isolation exerted seemingly-opposite effects in male and female mice, relative to their respective group-housed littermate controls. This distinctive pattern was observed for the effect of social isolation on the control of serotonergic neuron excitability via the SK family of calcium-activated potassium channels. Furthermore, we observed a similar and consistent pattern on tests relevant to assessing the efficacy of anti-depressant medicines, including the forced swim test, the novelty-suppressed feeding test, and the sucrose preference test. These findings underscore the concept that stress-elicited illness manifests distinctly in males and females and that treatments aimed at restoring serotonergic function may require a sex-specific approach. This article is part of the special issue entitled 'Serotonin Research: Crossing Scales and Boundaries'.


Assuntos
Canais de Potássio Cálcio-Ativados/metabolismo , Neurônios Serotoninérgicos/metabolismo , Serotonina/metabolismo , Caracteres Sexuais , Isolamento Social/psicologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio Cálcio-Ativados/antagonistas & inibidores , Neurônios Serotoninérgicos/efeitos dos fármacos
10.
J Neurosci ; 40(11): 2314-2331, 2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-32005764

RESUMO

Distinct components of working memory are coordinated by different classes of inhibitory interneurons in the PFC, but the role of cholecystokinin (CCK)-positive interneurons remains enigmatic. In humans, this major population of interneurons shows histological abnormalities in schizophrenia, an illness in which deficient working memory is a core defining symptom and the best predictor of long-term functional outcome. Yet, CCK interneurons as a molecularly distinct class have proved intractable to examination by typical molecular methods due to widespread expression of CCK in the pyramidal neuron population. Using an intersectional approach in mice of both sexes, we have succeeded in labeling, interrogating, and manipulating CCK interneurons in the mPFC. Here, we describe the anatomical distribution, electrophysiological properties, and postsynaptic connectivity of CCK interneurons, and evaluate their role in cognition. We found that CCK interneurons comprise a larger proportion of the mPFC interneurons compared with parvalbumin interneurons, targeting a wide range of neuronal subtypes with a distinct connectivity pattern. Phase-specific optogenetic inhibition revealed that CCK, but not parvalbumin, interneurons play a critical role in the retrieval of working memory. These findings shine new light on the relationship between cortical CCK interneurons and cognition and offer a new set of tools to investigate interneuron dysfunction and cognitive impairments associated with schizophrenia.SIGNIFICANCE STATEMENT Cholecystokinin-expressing interneurons outnumber other interneuron populations in key brain areas involved in cognition and memory, including the mPFC. However, they have proved intractable to examination as experimental techniques have lacked the necessary selectivity. To the best of our knowledge, the present study is the first to report detailed properties of cortical cholecystokinin interneurons, revealing their anatomical organization, electrophysiological properties, postsynaptic connectivity, and behavioral function in working memory.


Assuntos
Colecistocinina/fisiologia , Interneurônios/fisiologia , Memória de Curto Prazo/fisiologia , Rememoração Mental/fisiologia , Córtex Pré-Frontal/fisiologia , Animais , Comportamento Apetitivo/fisiologia , Aprendizagem por Discriminação/fisiologia , Discriminação Psicológica/fisiologia , Feminino , Genes Reporter , Interneurônios/classificação , Masculino , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/análise , Odorantes , Optogenética , Parvalbuminas/análise , Técnicas de Patch-Clamp , Recompensa , Esquizofrenia/fisiopatologia , Olfato/fisiologia , Potenciais Sinápticos/fisiologia
11.
Neuropharmacology ; 168: 107985, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32035145

RESUMO

Anxiety disorders may be mediated in part by disruptions in serotonin (5-hydroxytryptamine, 5-HT) system function. Behavioral measures of approach-avoidance conflict suggest that serotonin neurons within the median raphe nucleus (MRN) promote an anxiogenic state, and some evidence indicates this may be mediated by serotonergic signaling within the dorsal hippocampus. Here, we test this hypothesis using an optogenetic approach to examine the contribution of MRN 5-HT neurons and 5-HT innervation of the dorsal hippocampus (dHC) to anxiety-like behaviours in female mice. Mice expressing the excitatory opsin ChR2 were generated by crossing the ePet-cre serotonergic cre-driver line with the conditional Ai32 ChR2 reporter line, resulting in selective expression of ChR2 in 5-HT neurons. Electrophysiological recordings confirmed that this approach enabled reliable optogenetic stimulation of MRN 5-HT neurons, and this stimulation produced downstream 5-HT release in the dHC as measured by in vivo microdialysis. Optogenetic stimulation of the MRN elicited behavioral responses indicative of an anxiogenic effect in three behavioural tests: novelty-suppressed feeding, marble burying and exploration on the elevated-plus maze. These effects were shown to be behaviourally-specific. Stimulation of 5-HT terminals in the dHC recapitulated the anxiety-like behaviour in the novelty-suppressed feeding and marble burying tests. These results show that activation of 5-HT efferents from the MRN rapidly induces expression of anxiety-like behaviour, in part via projections to the dHC. These findings reveal an important neural circuit implicated in the expression of anxiety in female mice.


Assuntos
Ansiedade/metabolismo , Hipocampo/metabolismo , Núcleos da Rafe/metabolismo , Neurônios Serotoninérgicos/metabolismo , Animais , Ansiedade/genética , Ansiedade/psicologia , Channelrhodopsins/análise , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Feminino , Hipocampo/química , Locomoção/fisiologia , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Transgênicos , Optogenética/métodos , Técnicas de Cultura de Órgãos , Núcleos da Rafe/química , Neurônios Serotoninérgicos/química
12.
Mol Psychiatry ; 25(5): 1112-1129, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31431686

RESUMO

In mood disorders, psychomotor and sensory abnormalities are prevalent, disabling, and intertwined with emotional and cognitive symptoms. Corticostriatal neurons in motor and somatosensory cortex are implicated in these symptoms, yet mechanisms of their vulnerability are unknown. Here, we demonstrate that S100a10 corticostriatal neurons exhibit distinct serotonin responses and have increased excitability, compared with S100a10-negative neurons. We reveal that prolonged social isolation disrupts the specific serotonin response which gets restored by chronic antidepressant treatment. We identify cell-type-specific transcriptional signatures in S100a10 neurons that contribute to serotonin responses and strongly associate with psychomotor and somatosensory function. Our studies provide a strong framework to understand the pathogenesis and create new avenues for the treatment of mood disorders.


Assuntos
Anexina A2/metabolismo , Antidepressivos/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Proteínas S100/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Estresse Psicológico/metabolismo , Animais , Biomarcadores/metabolismo , Masculino , Camundongos , Córtex Motor/patologia , Serotonina/metabolismo , Córtex Somatossensorial/patologia , Estresse Psicológico/fisiopatologia
13.
ACS Chem Neurosci ; 10(7): 3078-3093, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31259523

RESUMO

The prefrontal cortex is essential for both executive function and emotional regulation. The interrelationships among these behavioral domains are increasingly recognized, as well as their sensitivity to serotonin (5-hydroxytryptamine, 5-HT). Prefrontal cortex receives serotonergic inputs from the dorsal and median raphe nuclei and is modulated by multiple subtypes of 5-HT receptor across its layers and cell types. Extremes of serotonergic modulation alter mood regulation in vulnerable individuals, yet the impact of serotonin under more typical physiological parameters remains unclear. In this regard, new tools are permitting a closer examination of the behavioral impact of the serotonin system. Optogenetic and chemogenetic manipulations of dorsal raphe 5-HT neurons reveal that serotonin has a greater impact on executive function than previously appreciated. Domains that appear sensitive to fluctuations in 5-HT neuronal excitability include patience and cognitive flexibility. This work is broadly consistent with ex vivo research investigating how 5-HT regulates prefrontal cortex and its output projections. A growing literature suggests 5-HT modulation of these prefrontal circuits is unexpectedly flexible to alteration during development by genetic, behavioral, environmental or pharmacological manipulations, with lasting repercussions for cognition and emotional regulation. Here, we review the cellular and circuit mechanisms of prefrontal serotonergic modulation, investigate recent research into the cognitive consequences of the serotonergic system, and probe the lasting consequences of developmental perturbations. Understanding both the complexity of the prefrontal serotonin system and its sensitivity during development are essential to learn more about the vulnerabilities of this system in mood and anxiety disorders and the underappreciated cognitive consequences of these disorders and their treatment.


Assuntos
Córtex Pré-Frontal/metabolismo , Receptores de Serotonina/metabolismo , Neurônios Serotoninérgicos/metabolismo , Serotonina/metabolismo , Animais , Humanos
15.
Neuropharmacology ; 154: 68-78, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30266600

RESUMO

Orexins are neuropeptides that are exclusively produced by hypothalamic neurons, which project throughout the entire brain. Orexin, also known as hypocretins, were initially identified to play a fundamental role in food intake, arousal and the regulation of sleep and wakefulness. Recent studies identified orexins to be critical for diverse physiological processes including motivation, reward, attention, emotional regulation, stress and anxiety. Here, I review recent findings that indicate orexin has an important role in acute and chronic stress. I also summarize the recent optogenetic and chemogenetic studies that have advanced our understanding of the orexin system. I will conclude by discussing clinical studies that implicate orexins in mental health disorders. This article is part of the Special Issue entitled 'Hypothalamic Control of Homeostasis'.


Assuntos
Encéfalo/metabolismo , Receptores de Orexina/fisiologia , Orexinas/fisiologia , Estresse Psicológico/metabolismo , Estresse Psicológico/psicologia , Animais , Nível de Alerta/fisiologia , Humanos , Vigília/fisiologia
16.
Neuron ; 98(5): 992-1004.e4, 2018 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-29754752

RESUMO

The efficacy and duration of memory storage is regulated by neuromodulatory transmitter actions. While the modulatory transmitter serotonin (5-HT) plays an important role in implicit forms of memory in the invertebrate Aplysia, its function in explicit memory mediated by the mammalian hippocampus is less clear. Specifically, the consequences elicited by the spatio-temporal gradient of endogenous 5-HT release are not known. Here we applied optogenetic techniques in mice to gain insight into this fundamental biological process. We find that activation of serotonergic terminals in the hippocampal CA1 region both potentiates excitatory transmission at CA3-to-CA1 synapses and enhances spatial memory. Conversely, optogenetic silencing of CA1 5-HT terminals inhibits spatial memory. We furthermore find that synaptic potentiation is mediated by 5-HT4 receptors and that systemic modulation of 5-HT4 receptor function can bidirectionally impact memory formation. Collectively, these data reveal powerful modulatory influence of serotonergic synaptic input on hippocampal function and memory formation.


Assuntos
Região CA1 Hipocampal/metabolismo , Região CA3 Hipocampal/metabolismo , Receptores 5-HT4 de Serotonina/metabolismo , Neurônios Serotoninérgicos/metabolismo , Serotonina/metabolismo , Memória Espacial/fisiologia , Animais , Axônios/metabolismo , Região CA1 Hipocampal/fisiologia , Região CA3 Hipocampal/fisiologia , Hipocampo , Potenciação de Longa Duração , Memória , Camundongos , Inibição Neural/fisiologia , Optogenética , Serotonina/fisiologia , Transmissão Sináptica
17.
Front Neural Circuits ; 11: 107, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29354034

RESUMO

Prefrontal cortex is a hub for attention processing and receives abundant innervation from cholinergic and serotonergic afferents. A growing body of evidence suggests that acetylcholine (ACh) and serotonin (5-HT) have opposing influences on tasks requiring attention, but the underlying neurophysiology of their opposition is unclear. One candidate target population is medial prefrontal layer 6 pyramidal neurons, which provide feedback modulation of the thalamus, as well as feed-forward excitation of cortical interneurons. Here, we assess the response of these neurons to ACh and 5-HT using whole cell recordings in acute brain slices from mouse cortex. With application of exogenous agonists, we show that individual layer 6 pyramidal neurons are bidirectionally-modulated, with ACh and 5-HT exerting opposite effects on excitability across a number of concentrations. Next, we tested the responses of layer 6 pyramidal neurons to optogenetic release of endogenous ACh or 5-HT. These experiments were performed in brain slices from transgenic mice expressing channelrhodopsin in either ChAT-expressing cholinergic neurons or Pet1-expressing serotonergic neurons. Light-evoked endogenous neuromodulation recapitulated the effects of exogenous neurotransmitters, showing opposing modulation of layer 6 pyramidal neurons by ACh and 5-HT. Lastly, the addition of 5-HT to either endogenous or exogenous ACh significantly suppressed the excitation of pyramidal neurons in prefrontal layer 6. Taken together, this work suggests that the major corticothalamic layer of prefrontal cortex is a substrate for opposing modulatory influences on neuronal activity that could have implications for regulation of attention.


Assuntos
Acetilcolina/metabolismo , Neurônios/metabolismo , Córtex Pré-Frontal/metabolismo , Serotonina/metabolismo , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Colinérgicos/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Optogenética , Técnicas de Patch-Clamp , Córtex Pré-Frontal/anatomia & histologia , Córtex Pré-Frontal/efeitos dos fármacos , Serotoninérgicos/farmacologia , Técnicas de Cultura de Tecidos
18.
Elife ; 52016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27874831

RESUMO

The activity of serotonin (5-HT) neurons is critical for mood regulation. In a mouse model of chronic social isolation, a known risk factor for depressive illness, we show that 5-HT neurons in the dorsal raphe nucleus are less responsive to stimulation. Probing the responsible cellular mechanisms pinpoints a disturbance in the expression and function of small-conductance Ca2+-activated K+ (SK) channels and reveals an important role for both SK2 and SK3 channels in normal regulation of 5-HT neuronal excitability. Chronic social isolation renders 5-HT neurons insensitive to SK2 blockade, however inhibition of the upregulated SK3 channels restores normal excitability. In vivo, we demonstrate that inhibiting SK channels normalizes chronic social isolation-induced anxiety/depressive-like behaviors. Our experiments reveal a causal link for the first time between SK channel dysregulation and 5-HT neuron activity in a lifelong stress paradigm, suggesting these channels as targets for the development of novel therapies for mood disorders.


Assuntos
Neurônios/fisiologia , Agonistas do Receptor de Serotonina/metabolismo , Serotonina/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Isolamento Social , Animais , Potenciais Evocados , Camundongos , Modelos Animais
19.
Bipolar Disord ; 16(8): 881-8, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24964373

RESUMO

OBJECTIVES: Over 12% of patients with bipolar disorder exhibit rapid cycling. The underlying biological mechanisms of this extreme form of bipolar disease are still unknown. This study aimed at replicating and extending findings of our previously published case report, where an involvement of prostaglandin synthesis-related genes in rapid cycling was first proposed. METHODS: Psychopathological follow-up of the reported case was performed under cessation of celecoxib treatment. In a prospective observational study, patients with bipolar disorder (n = 47; of these, four had rapid cycling) or with monopolar depression (n = 97) were recruited over a period of three years. Repeated psychopathology measurements were conducted using standard instruments. Peripheral blood mononuclear cells (PBMC) were obtained during as many consecutive episodes as possible and processed for mRNA isolation and quantitative real-time reverse transcriptase polymerase chain reaction for prostaglandin D2 synthase (PTGDS), aldo-ketoreductase family 1, member C3 (AKR1C3), cyclooxygenase-2 (PAN means all splice variants) (COX2PAN ), prostaglandin-endoperoxide synthase 2 (PTGS2), and purinergic receptor P2X, ligand-gated ion channel 7 (P2RX7). RESULTS: The follow-up of our original case of a patient with rapid cycling who had shown impressive psychopathological improvement under celecoxib revealed complete loss of this effect upon discontinuation of the COX2 inhibitor. Episode-specific gene expression measurements in PBMC of four newly recruited rapid cycling patients confirmed the higher expression of PTGDS in depressive compared to manic phases. Additionally, higher relative expression of PTGS2/COX2PAN was found. No comparable alterations were observable in samples available from the remaining 43 patients with bipolar disorder and the 97 monopolar depressed patients, emphasizing the advantages of the rapid cycling condition with its rapid and frequent shifts for identification of gene expression changes. CONCLUSIONS: This study supports a role for prostaglandins in rapid cycling and advocates the cyclooxygenase cascade as a treatment target in this condition.


Assuntos
Transtorno Bipolar/sangue , Inibidores de Ciclo-Oxigenase 2/farmacologia , Ciclo-Oxigenase 2/metabolismo , Oxirredutases Intramoleculares/metabolismo , Leucócitos Mononucleares/metabolismo , Lipocalinas/metabolismo , Idoso , Antidepressivos/uso terapêutico , Transtorno Bipolar/tratamento farmacológico , Transtorno Bipolar/fisiopatologia , Celecoxib , Ciclo-Oxigenase 2/genética , Inibidores de Ciclo-Oxigenase 2/uso terapêutico , Feminino , Seguimentos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Oxirredutases Intramoleculares/genética , Leucócitos Mononucleares/efeitos dos fármacos , Lipocalinas/genética , Masculino , Pessoa de Meia-Idade , Pirazóis/farmacologia , Pirazóis/uso terapêutico , RNA Mensageiro/metabolismo , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico
20.
J Neurosci ; 34(17): 6107-11, 2014 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-24760870

RESUMO

The activity of the prefrontal cortex is essential for normal emotional processing and is strongly modulated by serotonin (5-HT). Yet, little is known about the regulatory mechanisms that control the activity of the prefrontal 5-HT receptors. Here, we found and characterized a deregulation of prefrontal 5-HT receptor electrophysiological signaling in mouse models of disrupted serotonin transporter (5-HTT) function, a risk factor for emotional and cognitive disturbances. We identified a novel tyrosine kinase-dependent mechanism that regulates 5-HT-mediated inhibition of prefrontal pyramidal neurons. We report that mice with compromised 5-HTT, resulting from either genetic deletion or brief treatment with selective serotonin reuptake inhibitors during development, have amplified 5-HT1A receptor-mediated currents in adulthood. These greater inhibitory effects of 5-HT are accompanied by enhanced downstream coupling to Kir3 channels. Notably, in normal wild-type mice, we found that these larger 5-HT1A responses can be mimicked through inhibition of Src family tyrosine kinases. By comparison, in our 5-HTT mouse models, the larger 5-HT1A responses were rapidly reduced through inhibition of tyrosine phosphatases. Our findings implicate tyrosine phosphorylation in regulating the electrophysiological effects of prefrontal 5-HT1A receptors with implications for neuropsychiatric diseases associated with emotional dysfunction, such as anxiety and depressive disorders.


Assuntos
Comportamento Animal/fisiologia , Córtex Pré-Frontal/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Serotonina/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Feminino , Inibição Psicológica , Masculino , Camundongos , Fosforilação/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Células Piramidais/efeitos dos fármacos , Células Piramidais/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Transmissão Sináptica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...