Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 3677, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355956

RESUMO

We investigated the multifaceted gas sensing properties of porous silicon thin films electrodeposited onto (100) oriented P-type silicon wafers substrates. Our investigation delves into morphological, optical properties, and sensing capabilities, aiming to optimize their use as efficient gas sensors. Morphological analysis revealed the development of unique surfaces with distinct characteristics compared to untreated sample, yielding substantially rougher yet flat surfaces, corroborated by Minkowski Functionals analysis. Fractal mathematics exploration emphasized that despite increased roughness, HF/ethanol-treated surfaces exhibit flatter attributes compared to untreated Si sample. Optical approaches established a correlation between increased porosity and elevated localized states and defects, influencing the Urbach energy value. This contributed to a reduction in steepness values, attributed to heightened dislocations and structural disturbances, while the transconductance parameter decreases. Simultaneously, porosity enhances the strength of electron‒phonon interaction. The porous silicon thin films were further tested as effective gas sensors for CO2 and O2 vapors at room temperature, displaying notable changes in electrical resistance with varying concentrations. These findings bring a comprehensive exploration of some important characteristics of porous silicon surfaces and established their potential for advanced industrial applications.

2.
J Microsc ; 281(3): 190-201, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32926411

RESUMO

Till now electron microscopy techniques have not been used to evaluate the plasma-target interactions undergone during the magnetron sputtering process. The destructive nature of this interaction severely alters the target microstructure. Utilising quantitative microscopy techniques can shed light on the complex plasma and solid-state processes involved which can ultimately lead to improved functional thin film deposition. As a representative functional material, aluminium-doped-zinc oxide (AZO) is an upcoming alternative to conventional transparent electrode wherein the process optimisation is of great importance. In this paper, we evaluate the pre- and post-sputter field emission scanning electron microscopy (FESEM) data for ceramic AZO target fabricated at three final sintering temperatures (1100°C, 1200°C and 1300°C). In all cases, grain boundaries are merged in addition to a visible reduction in the secondary phases which makes segmentation-based image analysis challenging. Through surface statistics (i.e. fractal dimension, autocorrelation length, texture aspect ratio and entropy) as a function of magnification we can quantify the electron microscopy image of the microstructure. We show that the plasma-microstructure interaction leads to an increase in autocorrelation length, texture aspect ratio and entropy for the optimum AZO ceramic sputtering target sintered at 1200°C. Furthermore, a maximum reduction in fractal dimension span (as determined by exponential regression) is also observed for 1200°C. In addition to the evaluation of plasma effects on sintering, our approach can provide a window towards understanding the underlying thin film growth mechanisms. We believe that this technique can be applied to the defect characterisation of a wide range of polycrystalline ceramic sputtering targets (e.g. ITO, CZTS, GAZO and so on) with the ultimate goal of improving the magnetron sputtering process and the resulting functional thin film. LAY DESCRIPTION: Magnetron sputtering allows scientists to make functional thin films on the order of the nanoscale. In this technique, atoms are plucked from a 'target' then placed onto a substrate forming a thin nanometric film: all thanks to magnets, a special power supply and the fourth state of matter (plasma). Understanding what is going on and how to make a 'good' thin film is important for making better light emitting diodes, solar cells and light sensors. Scientists use electron microscopy to see what is going on in the microstructure of the sputtered thin films to fine tune the sputtering recipe. Here, for the first time, we have applied electron microscopy to see the surface of the microstructure before and after magnetron sputtering. This will help us understanding the plasma-microstructure interaction allowing us to make more informed decisions when fine-tuning the sputtering process to get improved thin films. This is a case study of aluminium-doped zinc oxide (AZO) target that could potentially replace indium tin oxide (ITO), which is widely used as a transparent electrode in devices involving light and electricity. In this case, improved characteristics would be lower electrical resistivity and higher transmission of light. We show that it is possible to use a mathematical description (e.g. the fractal dimension) of the scanning electron microscopy picture to show a link between the target surface and the functional properties. Simple explanation of fractal dimensions by Sixty Symbols ○ https://www.youtube.com/watch?v=cmBljeC79Ls Experimental demonstration of magnetron sputtering by The Thought Emporium ○ https://www.youtube.com/watch?v=Cyu7etM-0Ko Introductory video on magnetron sputtering by Applied Science ○ https://www.youtube.com/watch?v=9OEz_e9C4KM Demonstration of AZO target fabrication and sputtering by Pradhyut Rajjkumar ○ https://www.youtube.com/watch?v=kTLaTJfNX3c Simple explanation of a DIY SEM by Applied Science ○ https://www.youtube.com/watch?v=VdjYVF4a6iU.

3.
Microsc Res Tech ; 83(5): 457-463, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31912934

RESUMO

This work describes an analysis of titanium dioxide (TiO2 ) thin films prepared on silicon substrates by direct current (DC) planar magnetron sputtering system in O2 /Ar atmosphere in correlation with three-dimensional (3D) surface characterization using atomic force microscopy (AFM). The samples were grown at temperatures 200, 300, and 400°C on silicon substrate using the same deposition time (30 min) and were distributed into four groups: Group I (as-deposited samples), Group II (samples annealed at 200°C), Group III (samples annealed at 300°C), and Group IV (samples annealed at 400°C). AFM images with a size of 0.95 µm × 0.95 µm were recorded with a scanning resolution of 256 × 256 pixels. Stereometric analysis was carried out on the basis of AFM data, and the surface topography was described according to ISO 25178-2:2012 and American Society of Mechanical Engineers (ASME) B46.1-2009 standards. The maximum and minimum root mean square roughnesses were observed in surfaces of Group II (Sq = 7.96 ± 0.1 nm) and Group IV (Sq = 3.87 ± 0.1 nm), respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA