Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mech Behav Biomed Mater ; 120: 104563, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33940485

RESUMO

The mechanical performance of the dentin-adhesive interface contributes significantly to the failure of dental composite restorations. Rational material design can lead to enhanced mechanical performance, but this requires accurate characterization of the mechanical behavior at the dentin-adhesive interface. The mechanical performance of the interface is typically characterized using bond strength tests, such as the micro-tensile test. These tests are plagued by multiple limitations including large variations in the test results. The challenges associated with conventional tensile tests limit our ability to unravel the complex relationships that affect mechanical behavior at the dentin-adhesive interface. This study used the diametral compression test to overcome the challenges inherent in conventional bond strength tests. The bovine femur cortical bone tissue was considered as a surrogate material (the mineralized tissue) for human dentin. Two different adhesive formulations, which differed by means of their self-strengthening properties, were studied. The tensile behavior of the mineralized tissue, the adhesive polymer, and the bond strength of the mineralized tissue - adhesive interface was determined using the diametral compression test. The diametral compression test improved the repeatability for both the tensile and bond strength tests. The rate dependent mechanical behavior was observed for both single material and interfacial material systems. The tensile strength and bond strength of the mineralized tissue-adhesive interface was greater for the self-strengthening formulation as compared to the control.


Assuntos
Colagem Dentária , Adesivos Teciduais , Animais , Bovinos , Resinas Compostas , Dentina , Adesivos Dentinários , Humanos , Teste de Materiais , Cimentos de Resina , Propriedades de Superfície , Resistência à Tração
2.
J Mech Behav Biomed Mater ; 113: 104135, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33160267

RESUMO

Resin-based composite has overtaken dental amalgam as the most popular material for the repair of lost or damaged tooth structure. In spite of the popularity, the average composite lifetime is about half that of amalgam restorations. The leading cause of composite-restoration failure is decay at the margin where the adhesive is applied. The adhesive is intended to seal the composite/tooth interface, but the adhesive seal to dentin is fragile and readily degraded by acids, enzymes and other oral fluids. The inherent weakness of this material system is attributable to several factors including the lack of antimicrobial properties, remineralization capabilities and durable mechanical performance - elements that are central to the integrity of the adhesive/dentin (a/d) interfacial seal. Our approach to this problem offers a transition from a hybrid to a biohybrid structure. Discrete peptides are tethered to polymers to provide multi-bio-functional adhesive formulations that simultaneously achieve antimicrobial and remineralization properties. The bio-additive materials design combines several functional properties with the goal of providing an adhesive that will serve as a durable barrier to recurrent decay at the composite/tooth interface. This article provides an overview of our multi-faceted approach which uses peptides tethered to polymers and new polymer chemistries to achieve the next generation adhesive system - an adhesive that provides antimicrobial properties, repair of defective dentin and enhanced mechanical performance.


Assuntos
Adesivos , Colagem Dentária , Resinas Compostas , Restauração Dentária Permanente , Dentina , Cimentos de Resina
3.
Polymers (Basel) ; 12(9)2020 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-32932724

RESUMO

The inherent degradation property of most dental resins in the mouth leads to the long-term release of degradation by-products at the adhesive/tooth interface. The by-products increase the virulence of cariogenic bacteria, provoking a degradative positive-feedback loop that leads to physicochemical and mechanical failure. Photoinduced free-radical polymerization and sol‒gel reactions have been coupled to produce a novel autonomous-strengthening adhesive with enhanced hydrolytic stability. This paper investigates the effect of network structure on time-dependent mechanical properties in adhesives with and without autonomous strengthening. Stress relaxation was conducted under 0.2% strain for 8 h followed by 40 h recovery in water. The stress‒time relationship is analyzed by nonlinear least-squares data-fitting. The fitted Prony series predicts the sample's history under monotonic loading. Results showed that the control failed after the first loading‒unloading‒recovery cycle with permanent deformation. While for the experimental sample, the displacement was almost completely recovered and the Young's modulus increased significantly after the first test cycle. The experimental polymer exhibited higher degree of conversion, lower leachate, and time-dependent stiffening characteristics. The autonomous-strengthening reaction persists in the aqueous environment leading to a network with enhanced resistance to deformation. The results illustrate a rational approach for tuning the viscoelasticity of durable dental adhesives.

4.
ACS Appl Polym Mater ; 2(3): 1134-1144, 2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-33834166

RESUMO

Bacterial adhesion and growth at the composite/adhesive/tooth interface remain the primary cause of dental composite restoration failure. Early colonizers, including Streptococcus mutans, play a critical role in the formation of dental caries by creating an environment that reduces the adhesive's integrity. Subsequently, other bacterial species, biofilm formation, and lactic acid from S. mutans demineralize the adjoining tooth. Because of their broad spectrum of antibacterial activity and low risk for antibiotic resistance, antimicrobial peptides (AMPs) have received significant attention to prevent bacterial biofilms. Harnessing the potential of AMPs is still very limited in dentistry-a few studies have explored peptide-enabled antimicrobial adhesive copolymer systems using mainly nonspecific adsorption. In the current investigation, to avoid limitations from nonspecific adsorption and to prevent potential peptide leakage out of the resin, we conjugated an AMP with a commonly used monomer for dental adhesive formulation. To tailor the flexibility between the peptide and the resin material, we designed two different spacer domains. The spacer-integrated antimicrobial peptides were conjugated to methacrylate (MA), and the resulting MA-AMP monomers were next copolymerized into dental adhesives as AMP-polymer conjugates. The resulting bioactivity of the polymethacrylate-based AMP conjugated matrix activity was investigated. The antimicrobial peptide conjugated to the resin matrix demonstrated significant antimicrobial activity against S. mutans. Secondary structure analyses of conjugated peptides were applied to understand the activity differential. When mechanical properties of the adhesive system were investigated with respect to AMP and cross-linking concentration, resulting AMP-polymer conjugates maintained higher compressive moduli compared to hydrogel analogues including polyHEMA. Overall, our result provides a robust approach to develop a fine-tuned bioenabled peptide adhesive system with improved mechanical properties and antimicrobial activity. The results of this study represent a critical step toward the development of peptide-conjugated dentin adhesives for treatment of secondary caries and the enhanced durability of dental composite restorations.

5.
Dent Mater ; 36(2): 284-295, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31806495

RESUMO

OBJECTIVE: The purpose of this study was to evaluate a new synthesized multifunctional monomer, aminosilane functionalized methacrylate (ASMA), containing polymerizable methacrylate, tertiary amine, and methoxysilane functionalities in dental adhesive formulations, and to investigate the polymerization kinetics, leachates, thermal and mechanical properties of copolymers. METHODS: Adhesive contained HEMA/BisGMA (45/55, w/w) was used as a control, and mixtures based on HEMA/BisGMA/ASMA at the mass ratio of 45/(55-x)/x were used as experimental adhesive. Adhesives were characterized with regard to water miscibility, photo-polymerization behavior (Fourier transform infrared spectroscopy, FTIR), leached co-monomers (high performance liquid chromatography, HPLC), thermal properties (modulated differential scanning calorimeter, MDSC), and mechanical properties (dynamic mechanical analyzer, DMA). Stress relaxation times and the corresponding moduli, obtained from stress relaxation tests, are used in a simulated linear loading case. RESULTS: As compared to the control, ASMA-containing adhesives showed higher water miscibility, lower viscosity, improved monomer-to-polymer conversion, significantly greater Tg and rubbery modulus. HPLC results indicated a substantial reduction of leached HEMA (up to 85wt%) and BisGMA (up to 55wt%) in ethanol. The simulation reveals that the ASMA-containing adhesive becomes substantially stiffer than the control. SIGNIFICANCE: ASMA monomer plays multiple roles, i.e. it serves as both a co-initiator and crosslinker while also providing autonomous strengthening and enhanced hydrolytic stability in the adhesive formulations. This multifunctional monomer offers significant promise for improving the durability of the adhesive at the composite/tooth interface.


Assuntos
Cimentos Dentários , Metacrilatos , Hidrólise , Teste de Materiais , Polimerização
6.
Proc Inst Mech Eng H ; 234(3): 289-298, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31426717

RESUMO

In this study, deformation and failure mechanisms of mineralized tissue (bone) were investigated both experimentally and computationally by performing diametral compression tests on millimetric disk specimens and conducting finite element analysis in which a granular micromechanics-based nonlinear user-defined material model is implemented. The force-displacement relationship obtained in the simulation agreed well with the experimental results. The simulation was also able to capture location of the failure initiation observed in the experiment, which is inside out from the hole along the loading axis. Furthermore, propagation of micro-sized cracks into failure was observed both in the experiment using simultaneous slow-motion microscopy imaging and in the simulation analyzing the local distortion and local volume change within the specimen. The anisotropy evolution was found to be significant around the hole along the loading axis by evaluating the anisotropy index computed using finite element results. In conclusion, this work revealed that the prediction capability of granular micromechanics-based user-defined nonlinear material model (UMAT) is promising considering the match between the results and observations from the physical experiment and finite element analysis such as force-displacement relationship and failure initiation/pattern. This work has also shown that the tensile damage and failure of mineralized tissues can be characterized using diametral compression (split tension) test.


Assuntos
Calcificação Fisiológica , Modelos Biológicos , Resistência à Tração , Fenômenos Biomecânicos , Análise de Elementos Finitos , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA