Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 255: 121524, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38569360

RESUMO

In the context of circular economy and global shortage of phosphorus (P) fertilizer production, it is crucial to effectively recover P during the treatment and disposal of sewage sludge (SS). Although thermal treatment of SS has been widely applied, a targeted P reclamation route is not yet well established. This study has comprehensively investigated and compared the physicochemical properties of SS and solid residues (hydrochar (HC), biochar (BC), sewage sludge ash (SSA), hydrochar ash (HCA), and biochar ash (BCA)) after application of three typical thermal treatment techniques (i.e., hydrothermal carbonization (180‒240 °C), pyrolysis (400‒600 °C) and combustion (850 ℃). P speciation and transformation during thermal processes were extensively explored followed by a rational proposal of effective P reclamation routes. Specifically, thermal processing decomposed organic P and converted non-apatite P to apatite P. Orthophosphate-P was found to be the main species in all samples. Physicochemical properties of the resulting thermal-derived products were significantly affected by the thermal techniques applied, thereby determining their feasibility for different P reclamation purposes. In particular, ash is not recommended for agricultural use due to higher harmful metals content, while acid leaching can be an alternative solution to synthesize non-Fe-containing P products because of the lower co-dissolved Fe content in the leachate. HC and BC offer the option for synthesis of Fe containing products. Eventually, HC and BC demonstrate great potential for agriculture application, however, a comprehensive risk assessment should be conducted before their real-world applications.

2.
Chempluschem ; 82(5): 705-715, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-31961534

RESUMO

Novel monoisomeric perylene imide derivatives with terpyridinyl and pyrrolidinyl substituents were synthesized and deposited onto solid substrates, such as a thin film of Al2 O3 and mesoporous TiO2 nanoparticle layer, by using a simple dip-by-dip method. Arrays of up to 33 layers were built on Al2 O3 . In the case of mesoporous TiO2 , the interstitial volume between the particles was filled up with dye assemblies. Deposition could produce either layers of microcrystals or molecular layers if an appropriate washing procedure was used. The resultant arrays were studied by means of scanning electron microscopy, X-ray photoelectron spectroscopy measurements, and UV/Vis absorption.

3.
Chemistry ; 22(4): 1501-10, 2016 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-26632758

RESUMO

Terpyridine-substituted perylenes containing cyclic anhydrides in the peri position were synthesized. The anhydride group served as an anchor for assembly of the terpyridyl-crowned chromophores as monomolecular layers on metal oxide surfaces. Further coordination with Zn(2+) ions allowed for layer-by-layer formation of supramolecular assemblies of perylene imides on the solid substrates. With properly selected anchor and linker molecules it was possible to build high quality structures of greater than ten successive layers by a simple and straightforward procedure. The prepared films were stable and had a broad spectral coverage and high absorbance. To demonstrate their potential use, the synthesized dyes were employed in solid-state dye-sensitized solar cells, and electron injection from the perylene antennas to titanium dioxide was observed.

4.
Org Biomol Chem ; 11(37): 6397-406, 2013 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-23959205

RESUMO

Perylene diimides (PDIs) substituted with a terpyridine moiety at the bay-region have been synthesized. These building blocks were used to construct supramolecular complexes in chloroform. A dimer and a trimer were built via the bay-region complexation with zinc. The PDI compounds were further modified to have silane anchors and PDI self-assembled monolayers (SAMs) were prepared on a quartz substrate. Complexation of metal ions was also done on the surface, and this was observed clearly in the absorption spectrum. These studies on the surface show possible progress in the study of supramolecular multilayer structures.

5.
J Colloid Interface Sci ; 369(1): 58-70, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22230214

RESUMO

We have synthesized a set of porphyrin and phthalocyanine compounds with two different silane anchors. Syntheses of the anchor-substituted chromophores have been carried out via hydrosilylation of alkene derivatives, catalyzed by platinum complexes. The reduction side-process was suppressed using specific anchor/catalyst pairs, and the silane-containing compounds were successfully isolated from hydrogenated by-products in pure form with good yields. The target porphyrinoids having stable reactive silane anchors possess the ability to self-assemble on metal oxides and quartz surfaces and optical fibers. Covalent attachment is done in one-step, which makes the bonding process fast and easy. Immobilized chromophores were further converted by on-surface reactions into Zn(II) and Mg(II) metal complexes. The metallation time was found to be as fast as 1 min for Zn ion. Bonding densities calculated from the absorbances of the deposited layers give rough estimations for packing of the molecules on various substrates and evidence for monomolecular layers formation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...